Document Type
Article
Publication Date
5-20-2025
Abstract
Engineered cementitious composites (ECCs) exhibit superior mechanical properties (MPs) and excellent crack control capabilities, making them widely used in practical engineering applications. However, the MPs of ECCs in frozen states (FSs), particularly their flexural properties (FPs), still need to be better understood. MP tests were designed for frozen ECC samples to investigate the service performance of ECCs in an FS. The samples underwent 0 to 300 freeze–thaw cycles (FTs), followed by compressive and flexural tests at a constant freezing temperature of −18 °C. The compressive properties (CPs) and FPs of the samples and their influencing mechanisms were analyzed. Based on this analysis, a life prediction model (LPM) for freeze–thaw-damaged (FTD) ECCs was established using the entropy weight method and the GM(1,1) model to predict the durability changes of ECCs in FS. The results indicate that with an increasing number of FTs, the uniaxial compressive strength (CS), elastic modulus (E), initial crack strength, and ultimate strength of ECCs in the FS are higher than those in the thawed state (TS), with a notable increase in brittleness at ultimate failure. The overall stiffness of the specimens increased under high FTs. The established model effectively predicts the durability changes of ECCs in the FS.
Recommended Citation
Lu, S., Yin, L., Liu, S., Yin, D., Liu, J., Hou, H., & Li, L. (2025). Characterization of Mechanical Property Evolution and Durability Life Prediction of Engineered Cementitious Composites Under Frozen State. Materials, 18(10), 2375. https://doi.org/10.3390/ma18102375
