Document Type
Article
Publication Date
12-7-2014
Abstract
Aims
Drivers of soil respiration (R s ) in rock outcrop ecosystems remain poorly understood. We investigated these drivers in limestone cedar glades, known for their concentrations of endemic plant species and for seasonal hydrologic extremes (xeric and saturated conditions), and compared our findings to those in temperate grasslands and semi-arid ecosystems.
Methods
We measured R s , soil temperature (T s ), volumetric soil water content (SWC), soil organic matter (SOM), soil depth, and vegetation cover monthly over 16 mo and analyzed effects of these variables on R s .
Results
Seasonally, R s primarily tracked T s (r2 = 0.77; P < 0.01), however R s was depressed during a summer drought. SOM was highly variable spatially, and incorporating SOM effects into the R s model dramatically improved model performance. Both shallow soil and sparse vegetation cover were also associated with lower R s .
Conclusions
Soil depth, SOM, and vegetation cover were important drivers of R s in limestone cedar glades. Seasonal R s patterns reflected those for mesic temperate grasslands more than for semi-arid ecosystems, in that R s primarily tracked temperature for most of the year.
Recommended Citation
Cartwright, J., Hui, D. Soil respiration patterns and controls in limestone cedar glades. Plant Soil 389, 157–169 (2015). https://doi.org/10.1007/s11104-014-2348-6