Document Type

Article

Publication Date

3-24-2023

Abstract

Nutrient resorption is an important strategy for plants to retain critical nutrients from senesced leaves and plays important roles in nutrient cycling and ecosystem productivity. As a main economic crop and soil and water conservation species, Wuyi Rock tea has been widely planted in Fujian Province, China. However, foliar nutrient resorptions of Wuyi Rock tea cultivars have not been well quantified. In this study, three Wuyi Rock tea cultivars (Wuyi Jingui, Wuyi Rougui, and Wuyi Shuixian) were selected in the Wuyishan National Soil and Water Conservation, Science and Technology Demonstration Park. Resorption efficiencies of nitrogen (NRE), phosphorus (PRE), and potassium (KRE) along with their stoichiometric characteristics were determined. PRE of the three tea cultivars was significantly higher than KRE and NRE, indicating that tea cultivars were P limited due to low P availability for the tea growth. With the exception of Wuyi Rougui, leaf N and P contents of the other two cultivars (Wuyi Jingui and Wuyi Shuixian) had strong homeostasis under the changing soil environments. Leaf thickness and specific leaf area were positively and significantly correlated with KRE, and total chlorophyll concentration was positively correlated with NRE, indicating that leaf functional traits can be used as indicators for nutrient resorption status. Wuyi Rock tea cultivars had strong adaptabilities to the environments and had high carbon sequestration capabilities; thus, they and could be introduced into nutrient-poor mountainous areas for both economic benefits and soil and water conservation.

Share

COinS