Document Type
Article
Publication Date
3-2013
Abstract
A comparative proteomics study using isobaric tags for relative and absolute quantitation (iTRAQ) was performed on a mesophytic tomato (Solanum lycopersicum) cultivar and a dehydration-resistant wild species (Solanum chilense) to identify proteins that play key roles in tolerance to water deficit stress. In tomato ‘Walter’ LA3465, 130 proteins were identified, of which 104 (80%) were repressed and 26 (20%) were induced. In S. chilense LA1958, a total of 170 proteins were identified with 106 (62%) repressed and 64 (38%) induced. According to their putative molecular functions, the differentially expressed proteins belong to the following subgroups: stress proteins, gene expression, nascent protein processing, protein folding, protein degradation, carbohydrate metabolism, amino acid and nucleotide metabolism, lipid metabolism, signal transduction, and cell cycle regulation. Based on changes in protein abundance induced by the dehydration treatment, cellular metabolic activities and protein biosynthesis were suppressed by the stress. In S. chilense, dehydration treatment led to elevated accumulation of proteins involved in post-transcriptional gene regulation and fidelity in protein translation including prefoldin, which promotes protein folding without the use of adenosine-5′-triphosphate (ATP), several hydrophilic proteins, and calmodulin in the calcium signal transduction pathway. Those protein changes were not found in the susceptible tomato, ‘Walter’. Within each functional protein group, proteins showing opposite changes (dehydration induced vs. repressed) in the two species were identified and roles of those proteins in conferring tolerance to water deficit stress are discussed. Information provided in this report will be useful for selection of proteins or genes in analyzing or improving dehydration tolerance in tomato cultivars.
Recommended Citation
Zhou, S., Palmer, M., Zhou, J., Bhatti, S., Howe, K. J., Fish, T., & Thannhauser, T. W. (2013). Differential Root Proteome Expression in Tomato Genotypes with Contrasting Drought Tolerance Exposed to Dehydration, Journal of the American Society for Horticultural Science J. Amer. Soc. Hort. Sci., 138(2), 131-141. Retrieved May 19, 2021, from https://journals.ashs.org/jashs/view/journals/jashs/138/2/article-p131.xml