Document Type
Article
Publication Date
4-29-2015
Abstract
Background
A three-year field experiment was conducted to examine the responses of corn yield and soil nitrous oxide (N2O) emission to various management practices in middle Tennessee.
Methodology/Principal Findings
The management practices include no-tillage + regular applications of urea ammonium nitrate (NT-URAN); no-tillage + regular applications of URAN + denitrification inhibitor (NT-inhibitor); no-tillage + regular applications of URAN + biochar (NT-biochar); no-tillage + 20% applications of URAN + chicken litter (NT-litter), no-tillage + split applications of URAN (NT-split); and conventional tillage + regular applications of URAN as a control (CT-URAN). Fertilizer equivalent to 217 kg N ha-1 was applied to each of the experimental plots. Results showed that no-tillage (NT-URAN) significantly increased corn yield by 28% over the conventional tillage (CT-URAN) due to soil water conservation. The management practices significantly altered soil N2O emission, with the highest in the CT-URAN (0.48 mg N2O m-2 h-1) and the lowest in the NT-inhibitor (0.20 mg N2O m-2 h-1) and NT-biochar (0.16 mg N2O m-2 h-1) treatments. Significant exponential relationships between soil N2O emission and water filled pore space were revealed in all treatments. However, variations in soil N2O emission among the treatments were positively correlated with the moisture sensitivity of soil N2O emission that likely reflects an interactive effect between soil properties and WFPS.
Conclusion/Significance
Our results indicated that improved fertilizer and soil management have the potential to maintain highly productive corn yield while reducing greenhouse gas emissions.
Recommended Citation
Corn Yield and Soil Nitrous Oxide Emission under Different Fertilizer and Soil Management: A Three-Year Field Experiment in Middle Tennessee Deng Q, Hui D, Wang J, Iwuozo S, Yu CL, et al. (2015) Corn Yield and Soil Nitrous Oxide Emission under Different Fertilizer and Soil Management: A Three-Year Field Experiment in Middle Tennessee. PLOS ONE 10(4): e0125406. https://doi.org/10.1371/journal.pone.0125406