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Abstract: The harvesting and hauling operations of bioenergy feedstock is an important area in biofuel
production. Production costs can be minimized by maintaining optimal machinery units for these
operations. The objective of this study is to design an optimal harvesting unit for bioenergy refinery
and estimate harvesting and hauling costs of energy cane. A biorefinery with the annual capacity
of processing twenty-five million imp. gallons of ethanol were considered. Given the efficiency
of harvesting, a two-row soldier system was considered. Considering the year-round supply of
energy cane to the refinery, the optimal machinery unit was designed, and the combined operation
costs were derived. The average estimated ownership, repair, labor and fuel and lubricant costs of
biomass harvest unit were calculated to be $0.50, $0.54, $1.78 and $1.51/mt, respectively. The costs
distribution generated showed harvesting and hauling costs could range between $5.47–$9.23/mt
of energy cane. The methodology and the research output will provide guidelines for investors in
designing harvesting and hauling units and estimating costs for different scales of operation.

Keywords: bioenergy; biorefinery; cost modelling; harvesting and hauling unit; energy cane; machinery;
simulation

1. Introduction

Biomass resources have greater potential to increase energy security in regions with
inadequate fossil fuel reserves, improve the supplies of fuel transportation and maintain a
stable environment by decreasing net emissions of carbon into the atmosphere [1–4]. The
availability and potentiality of biomass are dependent on a wide range of factors, such
as land availability, technological conversion, environmental changes, and competition
with food production [5]. Among a variety of candidate crops, energy cane has recently
gained popularity as a bioethanol feedstock [6–10]. Energy cane has a stronger energy
balance than other competing crops due to its low input requirements, adaptability, and
exceptional biological productivity [11,12]. Energy cane (Saccharum spp.) is a hybrid
between commercial sugarcane lines and wild sugarcane (Saccharum spontaneum L.) that has
been developed and cultivated primarily for the purpose of using biomass as a fuel [13,14].
It has a lower sugar concentration than commercial sugarcane cultivars but a higher cold
tolerance, allowing for a broader growing zone in the southeastern United States [15–18].
Energy cane dry matter yields have ranged from 8 to 53 Mg/ha year−1 in the southeastern
United States, depending on location, cultivar, years after planting, number of annual
cuttings, and input amounts [19–21]. When grown in the tropics and subtropics, energy
cane is a promising feedstock for biomass production and could play a significant role
as a bioenergy crop, even though there are environmental interactions between biomass
production and risks that must be assessed [10,16].

The southeastern Regional Biomass Research Center (RBRC) is working to produce
high-performing herbaceous feedstocks such as energy cane and other subtropical/tropical
perennial grasses [22–24]. The recent use of biomass for energy production has grown in
the past years, specifically in developed countries as well [25–27]. Global interest is shown
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in the opportunities that bioenergy presents, especially in the sustainable development of
more modern and efficient bioenergy production systems. However, this has increased the
forecasts and energy needs in many developed countries even though all evidence points
to the biomass potential, and domestic biofuel production capacity will be insufficient to
meet the energy needs of these countries [28].

Agricultural input use and production costs are important for biomass production
decisions as well as a research tool to analyze the farm economy [29]. One of the major
challenges facing industrial biofuel production is the production costs of feedstock [30].
Harvesting and transportations operations are important in maintaining the economic
viability of bioenergy production [31–33]. Due to operational risk, high input costs, price
fluctuations, etc., producers find it difficult to increase profit and to remain sustainable.
Among the agricultural production costs, machinery is a major cost item. For example,
development of new machineries, technological development, and fluctuating energy prices
have caused farm machinery and power costs to increase in recent times. The operators
need to make smarts decisions about acquiring, operating and maintaining machinery to
minimize costs. An accurate estimate of the costs of owning and operating farm machinery
is helpful in making best decisions. Therefore, a development of a methodology to estimate
machinery costs for harvesting and hauling operations would be useful for producers in
estimating costs in the absence of detailed farm survey data. The objective of this paper is
to design a harvesting and hauling unit for a representative biorefinery and estimate the
associated costs. The structure of the paper is designed as follows. In the next section, the
data and the estimation procedures are described, then the estimated results are presented,
and, finally, the conclusions of the research are highlighted.

2. Materials and Methods

Biomass production from energy cane was considered for the analysis. There are two
types of herbaceous biofuel feedstocks, namely thick-stemmed species such as energy cane
and thin-stemmed species, hence different types of machines are required for harvesting.
Basically, two methods are available for handling high moisture crops, namely a direct cut
system and a wilting system [34]. The harvesting and hauling designed for costs estimated
here are for feedstock supply for an ethanol plant with a 25-million-gallon annual capacity.

It is assumed that harvesting and hauling operations of thick stem biomass such as en-
ergy cane are similar to sugarcane. For example, sugarcane harvesting is done by two types
of mechanical harvesters, namely combine harvesters and whole stalk harvesters. The com-
bine harvester is popular in Australia and the states of Florida and Texas in the USA. The
whole stalk harvesting system is the predominant method of harvesting in Louisiana [35].
However, in a combine harvester, the hours of combine operations needed to harvest
a given amount of acreage is about twice the time required for a soldier harvester [36].
Therefore, a two-row soldier harvester was considered for efficient harvesting of energy
cane. A soldier harvester can harvest around 90–140 mt [35]. The two-row loader machine
was taken for loading the harvested biomass for both systems. The average capacity of
the two-row loader is 75 mt/h. There are two choices for transporting harvested biomass.
Biomass can be directly transported to the processing facility using direct wagons. The
other option is to bring the harvested biomass to the on-farm facility using transfer wagons.
The average capacity of transfer or direct wagon is 10 mt. The stored biomass is loaded
into truck trailers using a transloader and transported to the refinery. A transloader has the
capacity to load around 100 mt/h, while truck trailers have the capacity of 28 mt (Figure 1).

The following assumptions [35,36] were made in estimating applicable costs. The
average annual biomass yield of energy cane was 66.12 mt/ha. For energy cane, line
up time in the field for transfer and direct wagon is assumed to be 8 min. Distance to
the transfer site and to the processing site was assumed to be 0.5 and 5 km, respectively.
Waiting time to unload for transfer and direct wagon at the loading site was assumed to
be 8 min. Queuing time at the loading site was assumed to be 8 min, while queuing and
unloading time at the mill was assumed to be 15 min. The number of working hours per
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day was assumed to be 8 h. It is assumed that half of the daily harvested biomass is directly
transported to the processing plant while the rest of the harvested product is transported
to the transloading site at the farm.
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Figure 1. Energy cane harvesting and hauling unit (adopted from sugarcane harvesting system, 36).

Details of machine specifications (hp, purchasing costs, age, salvage value factor,
fuel and lubrication factors, etc.) needed for the analysis were gathered from published
data [37–40]. The harvesting and hauling cost model were based on the economic engineer-
ing approach [39].

Energy cane Harvesting and Hauling Costs (HHCi) is a function of Ownership Cost
of Machinery (OCM), Fuel Cost (Fuel), Lubrication Cost (Lubri), Repair Cost (Repair), and
Operating Labor Cost (OL).

HHCi = OCMi + Fueli + Lubrii + Repairi + OLi
OCMi = capital recovery + TIH
capital recovery = (total depreciation × capital recovery factor) + (salvage value × interest rate)
total depreciation = initial costs of machinery − salvage value
capital recovery factor = 0.13
salvage value = initial costs of machinery × salvage value factor (0.3)
TIH = Taxes, Insurance & Housing = 0.01 × purchase price
Fueli (Average diesel consumption per hour) = diesel consumption factor (0.044) × maximum horsepower
Lubrii =lubrication factor (0.15) × Average cost for fuel consumption
Repairi = repair cost factor (0.03) × purchase price

The labor cost include costs for harvesting and hauling.

Labori = labor cost for the harvest unit + labor cost for transportation

Specific data and the estimation procedures are elaborated under the respective tables
under the results and discussion for better visualization.

3. Results
3.1. Energy Cane Feedstock Requirement

The estimated farm size and the total feedstock requirement for the continuous supply
of energy cane for the operation of a biorefinery with an annual capacity of 25 million
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gallons is given in Table 1. Based on the assumption that there are 300 operational days of
the plant, the daily ethanol production was 83,333 imperial gallons (imp gal). The annual
supply of feedstock for the ethanol plant with the above capacity requires 4726 ha of energy
cane field. The total energy cane requirement and area needed to be harvested on a daily
basis were 1042 mt and 15.75 ha, respectively.

Table 1. Minimum area needed for daily harvesting for continuous supply of energycane for biorefinery.

Category Value

Yield (MT/ha) 66.12

Ethanol yield (imp gal/mt) 80.00

Ethanol yield (imp gal/mt/year) 5289.80

Total Ethanol yield per farm (imp gal) 25,000,000

Plant Capacity (imp gal) 25,000,000

Days of operation per year 300

Daily capacity 83,333

Total cane yield needed (mt) 312,500

Energycane needed per day (mt) 1042

Farm size (ha) 4726

Minimum area needed to harvest (ha/day) 15.75

3.2. Harvesting Unit

Table 2 shows the number of machines needed per day for harvesting and loading.
The estimated numbers of machines needed were based on the total hours needed for daily
harvest and the number of working hours/days. Accordingly, two harvesters are needed
to harvest the biomass yield to be harvested daily assuming an 8-h workday schedule. To
load the harvested biomass, two two-row loaders are needed. Also, a single transloader is
needed to handle the daily biomass arriving at the transloading center.

3.3. Hauling Unit

The total number of wagons and trucks with trailers needed to effectively transport
daily harvested biomass was estimated based on total daily travel time needed to transport
the biomass. Based on an 8-h working day, approximately three transfer wagons, five direct
wagons, and four trucks with trailers are needed to transport the daily harvested energy
cane to the biorefinery (Tables 3 and 4).

3.4. Ownership and Operation Costs of Harvesting and Hauling

The details of estimated costs are presented under several sub-categories namely
machinery ownership, accumulated repair and maintenance, machinery operating labor,
fuel and lubricant.

3.4.1. Machinery Ownership

The breakdown of ownership costs for harvesting and hauling units is given in Table 5.
In order to estimate the ownership costs, salvage values were estimated based on current
list price of each piece of machinery and the remaining value factor [21]. The estimated
salvage value was used to estimate the depreciation cost of each machine. Total ownership
costs were based on estimated total depreciation, capital recovery, and taxes. Accordingly,
the estimated total ownership costs of machinery were $0.50/mt of energy cane. The most
ownership costs occur for two-row soldier harvesters and two-row loaders due to higher
initial costs.
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Table 2. Estimated number of harvesters and loading machine requirements for energycane.

Machinery Capacity
(mt/h)

Av.Capacity
(mt/h)

Average Farm
Yield (mt/ha)

Harvest
Capacity

(ha/h)

Max. Potential
Daily

Harvest ha 1

Actual Daily
Harvest Area

Actual Machine
Hours Needed

per day
Total Daily

Harvest (MT)
Total Farm
Size (ha)

Total Machine
Use h/year 2

Total Hours
for Harvesting

per Day

No of Machines
Needed

per Day 3

Two-row soldier
harvester 90–140 81.82 66.12 1.24 9.90 15.75 12.73 1042 4726 3819 12.73 2

Two-row loader 75.00 68.18 66.12 1.03 8.25 15.75 15.28 1042 4726 4583 15.28 2

Transloader loader 100.00 90.91 66.12 1.37 11.00 15.75 11.46 1042 4726 3437 11.46 1

1 Based on 8 h/day schedule. 2 Machine h/day × 300 working days/year. 3 Rounded to the nearest integer.

Table 3. Estimated number of wagons for transportation of harvested biomass.

Machinery Waiting Time
to Unload (min) Total Trips Total

Waiting Time
Waiting
Time(h)

Overall Waiting Time in
the Field and Loading Site

Total Travel
Time (h)

Total Time
(Q&T): h

Working
hour/day

Wagons
Needed 1

Transfer wagon 8.00 95.49 763.89 12.73 20.69 4.37 25.05 8.00 3

Direct wagon 8.00 95.49 763.89 12.73 20.69 27.28 47.97 9.00 5
1 Rounded to the nearest integer.

Table 4. Estimated number truck trailers for transportation of harvested biomass.

Machinery Queuing
Time (min) 1

No of
Trailer Loads

Total
Queuing

Time (h) 2

Total Round
Trip km 3

Time per
Round

Trip (h) 4

Total Travel
Time (h)

Queuing/Unloading
at Mill (min)

Total
Unloading
Time (h) 5

Total
Operation
Time (h) 6

Daily Work
Hours

Total Truck
Tailor Needed 7

Truck with
tailor 8.00 40.9 5.5 409.23 0.40 16.37 15.00 10.23 32.06 8.00 4

1 Queuing time at the loading site. 2 Total queuing time = queuing time × no of trailer loads = 327.4 min = 5.5 h. 3 Total round trip travelled = no of trailer loads × round trip per load
(10 km) = 409 km. 4 Time per round trip = distance for a round trip (10 km)/tractor speed (25 km/h). 5 Total unloading time = total trips (40.9) × queuing and unloading time (15
min/trip) = 614 min (10.23 h). 6 Total operation time = total queuing time + total travel time + unloading time. 7 Rounded to the nearest integer.



Energies 2022, 15, 5403 6 of 12

3.4.2. Accumulated Repair and Maintenance

The estimated accumulated repair costs are given in Table 6. Estimated hours used
by each machinery are the total machinery hours to be used during the life cycle of the
machine. Accumulated repair cost/h of machine use was based on the total accumulated
repair cost during the life of the machine and the estimated hours used for the machine
during its lifetime. Accordingly, the repair costs account for $0.37/mt of energy cane.

3.4.3. Operating Labor

The estimated total labor costs for harvesting and transportation of each machine is
given in Table 7. Annual use hours per machine were based on the total days for harvest
and working h/day. Total machine h/ha was based on estimated total machine hours and
the area to be harvested. Accordingly, the estimated total labor costs were $2.31/mt of
energy cane.

3.4.4. Fuel and Lubricants

The estimated fuel and lubricant costs were $0.97/m and $0.15/mt, respectively.
Accordingly, the total estimated costs for fuel and lubrication were $1.11/mt of energy cane
(Table 8).

The summary of the estimated costs of harvesting and the hauling unit is given
in Figures 2 and 3. Figure 2 shows annual costs, while Figure 3 shows costs/mt. The
ownership costs can be categorized as fixed costs, while repair, labor and fuel & lubricant
costs can be classified under variable costs. Accordingly, variable costs incur higher costs
($3.82/mt) compared to the ownership costs (0.50/mt) which is the case in crop production.
The total estimated costs of machinery for harvesting and hauling units were $4.32/mt of
energy cane.
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Table 5. Estimated ownership costs of machinery in harvesting and hauling unit.

Machinery HP Initial
Cost

Salvage
Value Factor

Salvage
Value 1

Total
Depreciation 2

Capital
Recovery

Factor

Interest
Rate

Capital
Recovery 3

Total
Taxes 4

Total
Ownership

Costs ($/Year) 5

Total
Ownership

Costs/mt

Two-row soldier system 350 $231,000 0.3 $69,300 $161,700 0.13 0.05 $24,486 $2310 $53,552 $0.17

Two-row loader 220 $165,000 0.3 $49,500 $115,500 0.13 0.05 $17,490 $1650 $38,280 $0.12

Transfer wagon 175 $40,000 0.3 $12,000 $28,000 0.13 0.05 $4240 $400 $13,920 $0.05

Direct wagon 175 $40,000 0.3 $12,000 $28,000 0.13 0.05 $4240 $400 $23,200 $0.07

Trans loader loader 85 $33,000 0.3 $9900 $23,100 0.13 0.05 $3498 $330 $3828 $0.01

Truck trailer 160 $49,500 0.3 $15,345 $34,155 0.13 0.05 $5207 $495 $22,810 $0.07
1 Salvage value = initial costs of machinery × salvage value factor. 2 Total depreciation = initial costs of machinery − salvage value. 3 Capital recovery = (Total depreciation × capital
recovery factor) + Total depreciation × (interest rate). 4 Total taxes = initial costs of machinery × 1%. 5 Total ownership costs = (capital recovery + taxes) × no of machines needed.

Table 6. Estimated repair costs of machinery.

Machinery HP Initial Cost Annual Use (h) Age (Year) Repair Costs
Factor

Accumulated
Repair Cost 1

Repair
Cost/Year Repair Costs/h Repair

Costs/mt

Two-row soldier system 350 $231,000 3819 12 30% $69,300 $5775 $1.51 $0.0185

Two-row loader 220 $165,000 399 10 30% $49,500 $4950 $12.40 $0.0158

Transfer wagon 175 $40,000 2400 13 30% $12,000 $923 $0.38 $0.0030

Direct wagon 175 $40,000 2700 10 30% $12,000 $1200 $0.44 $0.0038

Transloader loader 85 $33,000 299 8 30% $9900 $1237 $4.13 $0.0040

Truck trailer 160 $49,500 625 10 30% $14,850 $1485 $2.38 $0.0048
1 Accumulated repair cost = Initial cost of machinery (from Table 4) × repair costs factor.
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Table 7. Total labor costs for harvesting and transportation unit.

Machinery No of Machines
Needed

Annual Use
Hours per
Machine 1

Total Machine
Hours Total Area(ha) Machine Hours

per ha 2
Labor Cost

$/h
Total Labor

Costs

Total
Energycane
Yield (MT)

Cost/Mt

Two-row soldier system 2 3819 7639 4726 1.62 $18 $137,500 312,483 $0.44

Two-row loader 2 399 762 4726 0.16 $18 $13,719 312,483 $0.04

Transfer wagon 3 2400 7516 4726 1.59 $18 $135,290 312,483 $0.43

Direct wagon 5 2700 14,391 4726 3.05 $18 $259,040 312,483 $0.83

Transloader loader 1 299 299 4726 0.06 $18 $5388 312,483 $0.02

Truck with trailer 4 2400 9617 4726 2.03 $18 $173,103 312,483 $0.55
1 Annual use hours per machine = total days for harvest × working h/day. 2 Total machine h/ha = area to be harvested/estimated total machine hours.

Table 8. The estimated fuel and lubricant costs for harvesting and transportation unit.

Machinery
Diesel

Consumption
Factor

Av. Fuel
Consumption

(imp gal/h)

Diesel
Cost/imp gal

Av Fuel Cost
per Hour Fuel Cost/year

Total
Lubrication

Cost/h 1

Total
Lubrication

Cost/year

Total Fuel and
Lubrication

Cost/year

Fuel and
Lubrication

Costs/mt

Two-row soldier system 0.044 15.4 $3.81 $58.67 $224,102 $8.80 $33,615 $257,717 $0.82

Two-row loader 0.044 9.68 $3.81 $36.88 $14,718 $5.53 $2207 $16,926 $0.05

Transfer wagon 0.044 7.7 $3.81 $29.34 $70,408 $4.40 $10,561 $80,970 $0.26

Direct wagon 0.044 7.7 $3.81 $29.34 $79,209 $4.40 $11,881 $91,091 $0.29

Transloader loader 0.044 3.74 $3.81 $14.25 $4265 $2.14 $639 $4905 $0.02

Truck with trailer 0.044 7.04 $3.81 $26.82 $16,764 $4.02 $2515 $19,279 $0.06
1 Total lubrication costs on most farms average about 15% of fuel costs (lubrication factor of 0.15). Lubrication costs = 0.15 × average fuel costs/h.
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3.5. Distribution of Harvesting and Hauling Costs

To better visualize the potential range of costs, we reviewed the harvesting and hauling
costs of sugarcane which is a comparable crop for energy cane. Previous estimates on
sugarcane harvesting [36] showed harvesting costs range from $3.92–$9.42 range with
mean costs of $6.67. We considered our estimated costs as minimum costs and generated
the cost distribution based on assumptions from previous work (Figure 4). According to
90% confidence level, the harvesting and hauling costs could range from $5.47–$9.23/mt of
energy cane.
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4. Discussion

The results generated from this study will be useful for supply chain development
for supply of biomass for ethanol biorefineries. Biorefineries can evaluate options for
maintaining one’s own harvesting unit for their field operations or considering custom
harvesting for biomass supply. The results will be useful for harvesting companies to
determine initial capital investment, annual expenses for operation and production costs
based on timing of operations. The estimated harvesting and hauling unit is specific to a
biorefinery with a selected capacity, and the required machinery units may change with
biomass yield, ethanol yield/mt of biomass and the days of operation annually along
with the capacity of machine. A study of this nature is based on assumptions, hence any
changes in assumptions may affect the estimation. The harvesting and hauling costs are
sensitive to a wide range of stochastic factors including type of machinery (capacity, power,
initial costs etc.), travel time and distance, working hours, waiting time, labor wages, fuel
and lubricant prices etc. We generated the potential distribution of costs by analyzing
sugarcane harvesting and hauling costs. However, a detailed sensitivity analysis is useful
in evaluating costs under various scenarios given risk and uncertainty, hence we highlight
the importance of performing a sensitivity analysis in a similar study. A sensitivity analysis
would be useful to identify how the results can be applicable to other scenarios such as
different local/economic situations.

5. Conclusions

A supply of feedstock to an industrial bioenergy refinery with the processing capacity
of 25 million imp gal of ethanol was considered in this research. To supply energy cane, an
area of 4746 ha is needed. The machinery units required for the continuous harvest and
supply of energy cane were assessed, and the cost analysis was performed. The average
estimated ownership, repair, labor and fuel and lubricant costs of biomass harvest units
were calculated to be $0.50, $0.54, $1.78 and $1.51/ mt, respectively. The simulation results
show that costs distribution (95% CI) could range between $5.47–$9.23/mt of energy cane.
Currently, the commercial production of biomass sorghum in the southeastern region is
at early stage, hence the research output will provide vital information for the feedstock
development initiative. The research findings may help to identify and design machinery
units for harvesting biomass with lower costs. The study findings can also be used in
evaluating investment costs for designing harvesting and hauling units for different scales
of operation. The new investment opportunities in the biomass harvesting and hauling
operations will likely provide new revenue generation and employment opportunities that
would bring additional economic impact to local and the regional economies.
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