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Abstract: Reducing tillage has been widely promoted to reduce soil erosion, maintain soil health,
and sustain long-term food production. The effects of reducing tillage on crop nutritional quality in
organic and conventional systems, however, has not been widely explored. One possible driver of
crop nutritional quality might be the changing soil nitrogen (N) availability associated with reduced
tillage in various management systems. To test how reducing tillage affects crop nutritional quality
under contrasting conventional and organic farming systems with varied N inputs, we measured
nutritional quality (protein, fat, starch, ash, net energy, total digestible nutrients, and concentrations
of Ca, K, Mg, P, and S) of maize, wheat, oats, and soybeans harvested from a long-term trial comprised
of three farming systems under two tillage regimes: a conventional grain system (CNV); a low-input
organic grain system (LEG); and an organic, manure-based grain + forage system (MNR) under
conventional full-tillage (FT) and reduced-till (RT) management. Although maize and wheat yields
were 10–13% lower under RT management, grain quality metrics including protein, fat, starch, energy,
and mineral concentrations were not significantly affected by reducing tillage. Differences in nutrient
quality were more marked between farming systems: protein levels in maize were highest in the
MNR system (8.1%); protein levels in soybeans were highest in the LEG system (40.4%); levels of
protein (12.9%), ash (2.0%), and sulfur (1430 ppm) in wheat were highest in the CNV system, and
oat quality was largely consistent between the LEG and MNR systems. As grain quality did not
significantly respond to reducing tillage, other management decisions that affect nutrient availability
appear to have a greater effect on nutrient quality.

Keywords: conservation tillage; reduced-till; no-till; organic agriculture; grain quality

1. Introduction

Modern agriculture is often characterized by limited crop diversity, heavy tillage, and
a reliance on inorganic fertilizers [1]. Although these intensive practices helped double
average grain yields during the second half of the 20th century [2], these practices have also
dramatically increased soil erosion, disrupted soil structure, depleted soil organic matter
and natural fertility, and diminished soil biology [1]. This widespread soil degradation not
only undermines water quality, soil carbon (C) sequestration, and many other ecosystem
services [3], but may also jeopardize long-term crop productivity and quality [4].

To reverse or mitigate soil degradation in agroecosystems, a range of agricultural
practices have been proposed and include strategies such as reducing tillage, retaining
crop residues, diversifying crop rotations, and replacing or substituting synthetic fertilizers
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with organic fertilizers [5]. Among these conservation practices, reducing tillage has been
the most widely adopted by conventional farmers, with nearly 75% of crop acres in the
United States under reduced-till management (37% under no-till management) [6]. The
promise of improved soil health has even driven a growing number of organic farmers
to adopt reduce-till practices, despite the added challenge of managing weeds without
herbicides or intensive tillage [7]. Most reduced-till organic farms in the United States are
managed through cover crop-based rotational no-till, where conventional (full) tillage is
still used for certain phases of a crop rotation, while other crops are no-till planted into
freshly terminated cover crops [7–11]. However, despite erosion control and other soil
health benefits associated with tillage reduction [12–14], the long-term effects on crop yield
and nutrient quality have not been widely documented.

Existing research shows that reducing tillage does not consistently improve crop yield
in agricultural systems. A global meta-analysis of 610 studies that compared no-till and
conventional tillage showed that, on average, no-till reduces yields by 5.7% [15]. The largest
yield declines were observed when no-till was implemented alone, whereas co-adoption
of other conservation practices (e.g., residue retention and diverse crop rotations) usually
minimized the yield-limiting impacts of no-till. A more recent review of 49 meta-analyses
found that no-till production led to a significant decline of crop yield by 8.0% to 10.0% [16].
Reduced soil nitrogen (N) availability under reduced tillage may have contributed to this
yield decline, as numerous studies have reported that reduced or no tillage, although often
improving soil organic matter in the long run (>10 years), can cause declines in available soil
N in the short term [17–21]. While soil compaction and nutrient stratification may also have
contributed to these yield declines in agrochemical-based conventional systems [22,23], it is
unclear if reducing tillage—especially through cover crop-based rotational no-till—would
have similar impact in organic systems.

Unlike most conventional systems, which rely on inorganic fertility inputs, organic
systems usually rely on leguminous cover crops and/or periodically applied organic
amendments (e.g., compost, manure) as sources of fertility [24]. When cover crop residues
and organic amendments provide sufficient nitrogen (N), organic systems will often pro-
duce crops at similar yields [25,26] and of similar quality [27–29] as conventional systems.
Heavy tillage, however, is often relied upon to incorporate cover crop residues and or-
ganic amendments into soil, which can improve N availability for crops; in the absence
of heavy tillage, organic systems may have lower N availability despite sufficient N in-
puts [9]. Alternatively, as organic practices and reducing tillage encourage greater densities
of bioturbators (i.e., earthworms and soil arthropods) [30–33], biological activity may be
sufficient to incorporate organic inputs and ensure adequate N availability in reduced-till
organic systems.

Although a growing number of studies have measured how yield responds to reducing
tillage, the response of grain quality to reducing tillage has not been comprehensively
studied in either conventional or organic systems (Table A1; [34–71]). Moreover, few
studies have measured grain quality under the management practices employed in cover
crop-based rotational no-till; of the studies found through a literature search (Table A1),
only one included cover crops [44], only two explored minimal [42] or rotational no-till [61],
and none measured how reducing tillage affects grain quality of multiple crops harvested
from well-established, side-by-side organic and conventional systems. To address this
knowledge gap, we analyzed the nutritional quality of maize (Zea mays L), winter wheat
(Triticum aestivum L), oats (Avena sativa L.), and soybeans (Glycine max L.) harvested from
the long-term Farming Systems Trial (FST; Kutztown, Pennsylvania). We hypothesized that
(1) reducing tillage would lower crop yields in conventional and low-input legume-based
organic systems, but not in a manure-based organic system; (2) compared to conventionally-
grown crops, grain quality would be equivalent in a manure-based organic system (MNR),
but lower in a low-input legume-based organic system (LEG); (3) reducing tillage would
not affect the quality of grain produced under CNV or MNR management, as sufficient N
was supplied by inorganic fertilizers and manure applications, but reducing tillage would
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decrease the quality of crops grown in the LEG system because N inputs from leguminous
cover crops were not incorporated as effectively as under conventional tillage. Lower
grain yields and reduced grain quality can directly decrease food security [2] and can
dramatically affect livestock health and the quality of animal products [72,73].

2. Materials and Methods
2.1. Field Site, System Management, and Nitrogen Inputs

Yield and grain quality were measured from crops grown in the Farming Systems
Trial (FST) at the Rodale Institute in Kutztown, PA (Berks Co., 40◦33′5′′–75◦43′47′′) from
2008–2013 and 2016–2020. Two years (2014 and 2015) were excluded from this analysis be-
cause crop rotations were interrupted in 2014 to plant the entire field to oats, the nutritional
quality of which was previously assessed in Omondi et al. (2021) [74].

The FST is a long-term experiment that was originally established in 1981 to study how
soil health, agronomy, and economics change after transitioning to organic management.
The FST field-site is located in a subhumid climate (12.4 ◦C mean temperature and 1.105 m
annual precipitation) on a moderately well-drained Clarksburg silt loam (≤3% slope; fine-
loamy, mixed, superactive, mesic Oxyaquic Fragiudalf) with minimal slope (3% maximum
slope) [75]. Additional details on the long-term FST experiment can be found in Liebhardt
et al. (1989) [76] and Seidel et al. (2017) [77]. In brief, the FST initially comprised three
replicated farming systems under full tillage (FT): (1) a conventional grain cropping system
with inorganic fertilizer inputs (CNV); (2) a low-input organic grain cropping system
that relies on leguminous cover crops to supply N (LEG); and (3) an organic system with
occasional composted manure inputs and 3–4 years of forage production during each crop
rotation (MNR).

In 2008, the reduced-till treatment was introduced to the study by reducing tillage in
four of the eight system replicates (RT-CNV, RT-LEG, and RT-MNR) while standard tillage
(full-till = FT) continued in the other four replicates (FT-CNV = chisel plow + disking, FT-
LEG and FT-MNR = moldboard plow + disking + cultivation). Herbicide-based no-till was
adopted in the RT-CNV treatment while cover crop-based rotational no-till was adopted
in the RT-LEG and RT-MNR treatments. For cover crop-based rotational no-till, organic
maize and soybeans were no-till planted into cover crop mulches (hairy vetch (Vicia villosa)
or annual rye (Secale cereale) that were terminated with the use of a roller-crimper [8,78],
whereas moldboard plowing, disking, and packing preceded all other crops and cover
crops. Each system replicate was divided into three, 0.05-ha subplots (6 × 92 m) which
were planted at different phases of each crop rotation, so more crops within each rotation
could be represented within any given year (Table 1). Crop varieties, planting rates, and
crop rotations are included in Supplemental Table S1 and Figures S1 and S2. Above-ground
N inputs were estimated from inorganic fertilizers, composted manure, and terminated
hairy vetch cover crops (Table 1; detailed methods for N input estimates are included in
Appendix B).
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Table 1. Number of years each crop (maize, wheat, oats, and soybeans) was harvested from each
treatment (out of 11 possible years) and above-ground N inputs (mean ± standard error, kg N ha−1)
from inorganic fertilizers, composted manure, and terminated vetch cover crops. Inorganic N was
applied to CNV maize and wheat, manure was applied to MNR oats, and vetch was terminated
before planting maize in all systems (only in specific years in the RT-CNV system, see Figures S1 and
S2 for additional details).

Crop Maize Wheat Oats Soybeans

Treatment Harvests N inputs Harvests N inputs Harvests N inputs Harvests N inputs

FT-CNV 11 170 ± 2 1 67 ± 0 0 n.a. 10 0
RT-CNV 11 199 ± 9 6 73 ± 6 0 n.a. 10 0
FT-LEG 9 145 ± 11 5 0 9 0 8 0
RT-LEG 9 167 ± 14 5 0 9 0 8 0
FT-MNR 5 201 ± 10 6 0 4 266 ± 75 3 0
RT-MNR 5 181 ± 24 6 0 4 266 ± 75 3 0

2.2. Grain Yields and Nutrient Analyses

Maize, wheat, oat, soybean, and barley plants were hand-sampled immediately before
harvest in 2008–2013 and 2016–2020. Maize plants were sampled along one 5.3 m transect
per plot while soybeans, wheat, oats, and barley were sampled from three, 0.56 m2 quadrats
per plot. After drying full plant samples at 48 ◦C for a minimum of three days, grain and
beans were separated, cleaned (threshed and winnowed as needed), weighed for yield
estimates, and subsampled for grain quality analyses. All grain quality analyses were
performed by Dairy One (Ithaca, NY, USA). Maize, wheat, and oat dry matter was analyzed
for crude protein; starch; crude fat; ash; and concentrations of Ca, K, Mg, P, and S through
the use of near-infrared reflectance (NIR) spectroscopy [79]. Crude protein in soybeans was
determined based on the combustion method [80,81]. Measures of energy value for dairy
cows were estimated for all four grains: total digestible nutrients (TDN) was estimated as
sum of digestible protein, digestible carbohydrates, and 2.25× digestible fat; net energy for
maintenance (NEm, Mcal kg−1) was estimated as the energy value to maintain cow weight;
net energy for lactation (NEl, Mcal kg−1) which was estimated as the energy value for NEm
+ milk production and the last two months of gestation for cows; and net energy for gain
(NEg, Mcal kg−1) was estimated as the energy value for weight gain [82]. Additional NIR-
based analyses included acid and neutral detergent fiber (ADF, NDF) and insoluble crude
protein (ADICP, NDICP); adjusted, degradable, and soluble crude protein (ACP, DP_CP,
SP_CP); lignin; and non-fibrous carbohydrates. The results of these additional analyses are
summarized in Tables S2 and S3. As barley (Hordeum vulgare L.) was only grow in in the
FT-LEG treatment, only crude protein values from barley (determined through NIR) were
included in this analysis as part of the assessment of cumulative protein production.

2.3. Average Annual and Cumulative Protein Production

We calculated annual and cumulative protein production from 2008–2013 and 2016–2020
to integrate a measure of crop quality (protein content) with crop quantity (yield). We
calculated annual protein production for each subplot for each year, then summed pro-
tein production across all crops and all years (2008–2013, 2016–2020) as a cumulative
protein value for each subplot. Annual protein production was calculated as crude pro-
tein concentration (%) × crop yield (kg ha−1 year−1 at 0% moisture) for soybeans, maize,
wheat, oats, and barley. To account for protein production from forages grown in the
MNR system (maize silage and hay (7:4 Dactylis glomerata L. and Medicago sativa L.)), we
approximated crude protein content from total N content based on the Kjeldahl method
(protein = total N × 6.25). Forage biomass was sampled at three locations within each
subplot (three 0.25 m2 quadrats per plot), dried at 48 ◦C for a minimum of three days, then
analyzed for total N content by dry combustion [83].
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2.4. Statistical Analyses

All statistical analyses were performed in RStudio (v.1.4.1103) running R version
4.0.4 [84,85]. We used linear mixed effect models (lmer from the “lme4” package [86]) to
compare measures of grain quality, yields, and annual protein production for each crop,
with system and tillage as fixed effects and harvest year included as a random factor. As
the reduced-till treatments were distinctly different between the CNV and organic systems
(having eliminated tillage in the CNV system but not in the organic systems), tillage was
nested within system rather than treating tillage and system as fully crossed factors [87];
we denote this nested factor as tillage (system). We checked model criteria by visually
inspecting factor boxplots to test for homogenous variance and running Shapiro–Wilk
tests (shapiro.test) on model residuals to test for normality. Full mixed effect models were
compared to null models (models excluding fixed effects) to test overall model significance
(p < 0.05; anova function) while the significance of individual fixed factors was determined
based on χ2 tests (ANOVA from the “car” package [88]). Pairwise mean comparisons
were generated using the emmeans function from the “emmeans” package, with “mvt”
p-value adjustments to account for multiple comparisons [89]. We used ANOVA (aov) and
emmeans to assess cumulative protein production across the three systems and between
the tillage treatments.

3. Results
3.1. Maize

Maize yields and grain quality differed across the farming systems, while reducing
tillage only affected maize yields. Maize yields were significantly lower in the LEG system
compared to the CNV and MNR systems (Table 2). These lower yields corresponded with
the lower average N inputs in the LEG system (Table 1; CNV = MNR > LEG; χ2

2 = 13.2,
p = 0.001). Yields were marginally even lower where tillage was reduced in the LEG system
(t = −1.8, p = 0.08), but this did not correspond with differences in N inputs (Table 1;
χ2

1 = 1.2, p = 0.28). Yields were significantly lower where tillage was reduced in the CNV
system (t = −2.4 p = 0.02) despite significantly higher N inputs in the RT-CNV treatment
compared to the FT-CNV treatment (Table 1; χ2

1 = 5.4, p = 0.02). Neither N inputs before
maize nor maize yields differed between the RT-MNR and FT-MNR treatments (Table 1;
χ2

1 < 0.0001, p = 1.00). Measures of maize grain quality differed across the three cropping
systems but were not affected by reducing tillage in any of the systems (Tables 3 and 4).
Maize grown in the CNV system contained significantly less protein compared to maize
from the organic systems (4% less than in the LEG system and 12.5% less than in the
MNR system) and significantly less Mg but more starch than maize from the MNR system
(Table 4). The CNV and MNR systems produced maize with similar energy densities
(Table 4; TDN, NEg, NEl, and NEm) that were significantly higher than maize from the
LEG system. Maize from the LEG system also had significantly lower crude protein, crude
fat, and NEm levels compared to the MNR system and significantly lower NEg, NEl, NEm,
and TDN compared to the CNV system. Ash, Ca, K, P, and S levels in maize were not
significantly different across the three systems (Table 4).
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Table 2. Statistical summaries (χ2 values, p-values, and estimated marginal means) of linear mixed effect models for measures of grain yields across cropping
systems and between tillage treatments (nested within each system) with harvest year as a random effect. p-values less than 0.05 are bolded. Different uppercase
letters indicate significant differences between cropping systems and different lowercase letters indicate significant differences between tillage treatments within
each cropping systems (at p < 0.05 based on Kenward–Roger approximations).

Yield Model Summaries Estimated Marginal Mean Yields, kg ha −1

System Tillage (System) CNV LEG MNR

Crop χ2 p χ2 p FT RT FT RT FT RT

Maize 25.1 *** 9.6 0.02 7482 a 6670 b A 6071 5260 B 7357 6937 A
Wheat 13.3 0.001 11.1 0.01 2937 2745 AB 2396 2587 B 3165 a 2740 b A
Oats 1 25.4 *** 6.2 0.04 - - 1957 2163 B 2941 2579 A

Soybeans 266.8 *** 4.9 0.18 3448 3371 A 1980 1657 C 2327 2308 B
1 Only in LEG and MNR systems; *** p < 0.0001

Table 3. Statistical summaries (χ2 values and p-values) of linear mixed effect models for measures of grain quality across cropping systems and between tillage
treatments (nested within each system) with harvest year as a random effect. p-values less than 0.05 are bolded.

Maize Wheat Oats 1 Soybeans

System Tillage (System) System Tillage (System) System Tillage (System) System Tillage (System)

Response χ2 p χ2 p χ2 p χ2 p χ2 p χ2 p χ2 p χ2 p

Protein 2,
%

59.3 *** 1.2 0.76 83.9 *** 5.3 0.15 n.s. 23.3 *** 4.3 0.23

Fat 3, % 10.2 0.01 1.7 0.63 n.s. n.s. -
Starch, % 15.2 0.0005 0.3 0.96 24.3 *** 1.3 0.73 n.s. -
Ash, % n.s. 28.9 *** 0.6 0.90 n.s. -
NEg 4 17.2 0.0002 2.3 0.51 27.7 *** 1.8 0.62 n.s. 9.9 0.007 2.8 0.42
NEl 5 15.7 0.0004 1.4 0.70 29.9 *** 1.9 0.60 n.s. 11.3 0.004 1.8 0.61

NEm 6 16.8 0.0002 3.6 0.31 24.5 *** 2.0 0.58 n.s. n.s.
TDN 7, % 18.9 *** 2.5 0.48 16.1 0.0003 0.7 0.87 n.s. n.s.
Ca, ppm n.s. n.s. n.s. -

K, % n.s. n.s. 7.5 0.006 2.3 0.31 -
Mg, % 6.0 0.05 5.7 0.13 32.8 *** 0.1 1.00 n.s. -

P, % n.s. 19.5 *** 7.6 0.06 n.s. -
S, ppm n.s. 20.9 0.0001 1.5 0.67 n.s. -

1 Only LEG and MNR systems; 2 Protein = crude protein (%); 3 Fat = crude fat (%); 4 net energy for growth Mcal kg−1; 5 net energy for lactation Mcal kg−1; 6 net energy for maintenance
Mcal kg−1; 7 TDN = total digestible nutrients; n.s. = model was not significantly different from the null model at p < 0.05; *** p < 0.0001
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Table 4. Estimated marginal mean comparisons of grain quality measures between cropping systems. Different letters indicate significant differences between
cropping systems at p < 0.05 based on Kenward–Roger approximations.

Maize Wheat Oats 1 Soybeans

Response CNV LEG MNR CNV LEG MNR LEG MNR CNV LEG MNR

Protein 2, % 7.2 c 7.5 b 8.1 a 12.9 a 11.4 b 11.4 b 12.9 12.8 39.0 b 40.4 a 39.7 ab

Fat 3, % 3.79 ab 3.69 b 3.90 a 1.78 1.87 1.89 5.42 5.32 -
Starch, % 73.9 a 73.4 ab 72.5 b 65.7 c 66.9 b 67.7 a 44.5 44.6 -
Ash, % 1.43 1.45 1.46 2.04 a 1.80 b 1.74 b 3.49 3.49 -
NEg 4 1.52 a 1.51 b 1.52 ab 1.40 b 1.42 a 1.41 a 1.33 1.34 1.90 b 1.91 ab 1.91 a

NEl 5 2.076 a 2.066 b 2.074 ab 1.96 b 1.97 a 1.97 a 1.89 1.90 2.48 b 2.49 ab 2.49 a

NEm 6 2.203 a 2.191 b 2.202 a 2.07 b 2.08 a 2.08 a 1.98 1.99 2.672 2.683 2.682
TDN 7, % 88.22 a 87.82 b 88.10 ab 84.6 b 85.0 a 84.8 ab 79.73 80.17 97.0 97.4 97.3
Ca, ppm 159 152 185 537 504 487 1520 1460 -

K, % 0.405 0.399 0.394 0.439 0.435 0.428 0.500 a 0.473 b -
Mg, % 0.103 b 0.104 ab 0.109 a 0.133 a 0.134 a 0.121 b 0.157 0.154 -

P, % 0.299 0.296 0.307 0.376 a 0.380 a 0.352 b 0.414 0.389 -
S, ppm 916 924 952 1430 a 1330 b 1340 b 1700 1900 -

1 Only in LEG and MNR systems; 2 Protein = crude protein (%); 3 Fat = crude fat (%); 4 net energy for growth Mcal kg−1; 5 net energy for lactation Mcal kg−1; 6 net energy for
maintenance Mcal kg−1; 7 TDN = total digestible nutrients
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3.2. Wheat

Farming system significantly affected wheat yields and wheat quality while reducing
tillage only affected wheat yields. Overall wheat yields in the MNR system were signif-
icantly higher than in the LEG system (t120 = −3.6, p = 0.001), while CNV wheat yields
fell between the two organic systems (Table 2). Reducing tillage significantly decreased
wheat yields in the RT-MNR treatment relative to yields in the FT-MNR treatment (Table 2;
t115 = −3.0, p = 0.004), but did not affect yields in the other two system. CNV wheat
received significantly more N inputs (Table 1; χ2

2 = 134.8, p < 0.0001) compared to LEG
and MNR wheat, as organic wheat was never preceded by vetch and never received any
external N inputs. N inputs also did not significantly differ for wheat grown in the FT-CNV
and RT-CNV treatments (χ2

1 = 0.2, p = 0.65).
As with maize, most measures of wheat grain quality differed across the three cropping

systems but not between tillage treatments (Table 3). Wheat protein and starch showed an
opposite response to cropping-system as maize (Table 4); compared to organic wheat, the
CNV wheat had significantly higher crude protein (+13%) and significantly lower starch
levels (−1.8% and −3.0% compared to LEG and MNR, respectively). CNV wheat also
had significantly higher levels of ash and S yet significantly lower energy densities (NEg,
NEl, NEm, and TDN) than wheat grown in the two organic systems (Table 4). Mg and
P levels were significantly lower in wheat harvested from the MNR system compared
to the CNV and LEG systems (−9% Mg and −7% P in the MNR system), while S levels
were significantly higher in wheat from the CNV system (+6% compared to organic wheat).
Crude fat, Ca, and K levels in wheat were not significantly different across the three systems
(Table 4). Reducing tillage had a marginally significant effect on P levels in wheat (Table 3;
χ2 = 7.6, p = 0.06); P levels were 10% lower in the RT-CNV treatment compared to the FT-
CNV treatment (CNV: FT = 0.397%, RT = 0.356%, t125 = 2.5, p = 0.01), although P levels were
consistent between the FT and RT treatments in the two organic systems (LEG: t123 = −1.2,
p = 0.23; MNR: t125 = 0.08, p = 0.94). Reducing tillage did not affect any other measures of
wheat quality (Table 3).

3.3. Oats

Oat yields significantly differed between the two organic systems while oat quality
was largely consistent between the two organic systems and between tillage treatments.
Oats were grown in both the LEG and MNR systems, and like with wheat, oat yields in
the LEG system were significantly lower than in the MNR system (t107 = −5.0, p < 0.0001;
Table 2), which corresponded with the significantly higher above-ground N inputs in the
MNR system (Table 1; χ2

1 = 53.6, p < 0.0001). Although N inputs from manure were
identical between FT-MNR and RT-MNR treatments (χ2

1 = 0, p = 1), reducing tillage had a
marginal effect on oat yields in the MNR system (t99 =−2.0, p = 0.05). K levels were the only
measure of oat quality that differed between the LEG and MNR systems, and no measures
of oat quality responded to reducing tillage (Table 3). K levels were significantly higher
in oats grown in the LEG system compared to the MNR system (+6%; Table 4). Levels of
protein, fat, starch, ash, energy density (TDN, NEg, NEl, and NEm), and all other minerals
measured (Ca, Mg, P, and S) in oats did not significantly differ between the two organic
systems nor between tillage treatments (Tables 3 and 4).

3.4. Soybeans

Soybean yields and grain quality differed across farming systems but not between
tillage treatments. Soybean yields were significantly lower under organic management,
especially in the LEG system, but reducing tillage did not significantly affect soybeans
yields (Table 2). Soybean quality was only measured as crude protein content and energy
density (TDN, NEg, NEl, and NEm), both of which significantly differed among cropping
systems but not between tillage treatments (Table 3). Crude protein levels were significantly
higher in soybeans harvested from the LEG system compared to the CNV system (+3.5%).
NEg and NEl were significantly higher in soybeans harvested from the MNR system
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compared to the CNV system, but only by less than 1% (Tables 3 and 4). NEm and TDN
did not differ among cropping systems nor tillage treatments (Tables 3 and 4).

3.5. Average Annual and Cumulative Protein Production

Average annual protein production (% protein × annual grain yield, Mg ha−1 year−1)
for soybeans, maize, wheat, and oats did not differ between tillage treatments but did
largely follow the same cropping-system trends as crop yields (Figure 1). For all four crops,
annual protein production was significantly lower in the LEG system compared to the
CNV and MNR systems. Wheat and maize grown in the CNV and MNR systems produced
similar amounts of protein, while CNV soybeans produced more protein per hectare than
MNR soybeans.
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Figure 1. Average annual crude protein production (Mg ha−1 year−1) of (a) soybeans, (b) maize,
(c) and wheat across the three farming systems and two tillage treatments (emmeans ± s.e.) and
of (d) oats between the two organic systems and two tillage treatments. Uppercase letters indicate
significant differences in average annual protein production among cropping systems (soybeans:
χ2

2 = 218.2, p < 0.0001; maize: χ2
2 = 17.0, p = 0.0002; wheat: χ2

2 = 23.7, p < 0.0001; oats: χ2
2 = 18.6,

p < 0.0001). Average annual protein production did not significantly differ between tillage treatments
within any of the systems (soybeans: χ2

3 = 4.8, p = 0.19; maize: χ2
3 = 5.2, p = 0.16; wheat: χ2

3 = 5.4,
p = 0.15; oats: χ2

3 = 5.8, p = 0.05). Significant differences (p < 0.05) were based on mean comparisons
from emmeans with Tukey HSD adjustments for linear mixed effect models.

Cumulative protein production (sum of average annual protein production from
2008–2013 and 2016–2020) differed across cropping systems and between the CNV tillage
treatments (Figure 2). Cumulative protein from grain was significantly lower in organic
systems; compared to the CNV system, cumulative protein from grain was 43% lower in the
LEG system and 60% lower in the MNR system. Although the MNR system produced the
least amount of protein from grain, forages provided 1.6× the amount of protein provided
by grain in the MNR system, so overall protein production (grain + forages) was similar
between the MNR and CNV systems (Figure 2). Cumulative protein production in the
MNR system did not differ between tillage treatments (± forages), but the RT-CNV and
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RT-LEG treatments produced significantly less (−16% and −13%) cumulative protein than
their FT counterparts.
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Figure 2. Cumulative protein (Mg ha−1) in grain (soybeans, maize, oat, wheat, and barley), and
harvested forages (hay and silage = lighter bars) across the three farming systems and tillage treat-
ments for 11 harvest years (2008–2013 and 2016–2020). Error bars are ± standard error for cumulative
protein from grain + forages. Uppercase letters indicate significant differences in cumulative protein
across cropping systems (grain alone: F2,66 = 228.7, p < 0.0001; grain + forages: F2,66 = 200.9, p < 0.0001)
and lowercase letters indicate significant difference between tillage treatments within each system
(grain + forages: F3,66 = 10.0, p < 0.0001) based on mean comparisons from emmeans with Tukey
HSD adjustments.

4. Discussion

As hypothesized, reducing tillage did not reduce crop quality in the conventional
grain system (CNV) nor the manure-based grain + forages system (MNR). Contrary to
our hypothesis, reducing tillage also did not reduce grain quality in the low-input organic
grain system (LEG). Although the LEG system consistently had lower crop yields, LEG
crops were often of similar or higher quality as crops from the other two systems. Grain
quality did differ across the three cropping systems, but the magnitude and direction of
those differences were crop specific and did not always decrease under lower N-availability
as we had hypothesized.

Of the four grain crops grown in the FST, maize may be particularly sensitive to
changes in N availability as it requires the highest N inputs [90]. As N inputs were
significantly higher for maize in the RT-CNV treatment compared to the FT-CNV treatment
(additional N provided by vetch that was planted once or twice in the RT-CNV subplots
between 2009 and 2013) we would have expected to see higher maize yield and quality
in the RT treatment. Maize yields, however, were 11% lower in the RT-CNV treatment
compared to the FT-CNV, and maize quality did not differ between the FT-CNV and RT-
CNV treatments. Maize yields under conventional no-till production are often lower than
full-till production [15], and the additional N from vetch may not have been substantial
enough to counteract the other factors that often limit maize productivity in no-till systems
(such as lower soil temperatures at planting and increased weed competition) [91]. In
addition to continued tillage in cultivation in the organic RT rotations, robust cover-crop
mulches may have helped maintain maize yields in the organic RT treatments. Additionally,
similar to some previous findings [92], maize quality was not significantly lower in the RT
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treatments and appears to be dictated more by large differences in total N inputs and a
quality–quantity trade-off.

Unlike for the other three crops in this study, maize received N inputs in all three
systems (Table 1) and differences in the type and quantity of N inputs appear to have
affected both maize yield and maize quality. Vetch cover crops were used as a green
manure to provide N for maize in both the LEG and MNR systems, but vetch tended
to perform better in the MNR system; at termination, vetch above-ground biomass had
the potential to provide 22% more N in the MNR system compared to the LEG system.
Lower N availability in the LEG system likely contributed to lower yields, protein content,
and fat content of maize grown in the LEG system compared to the MNR system. Other
system characteristics, including manure inputs earlier in the crop rotation, also likely
contributed to the better performance of maize in the MNR system. Although CNV maize
also received more N inputs than LEG maize, protein concentrations were lower in CNV
maize compared to LEG maize. Despite higher N inputs, the higher denitrification and
leaching rates of inorganic N [93] may have decreased N availability in the CNV system,
which could have limited N uptake and protein production by CNV maize. As maize
yields were significantly higher in the CNV system; however, lower protein concentrations
more likely reflect a nutrient dilution effect at high crop yields. Conventional crop breeding
has largely focused on increasing grain yields without considering grain quality, so most
high-yielding conventional varieties tend to increase carbohydrate production without
corresponding increases in protein or fat production [94]. This would explain why energy
densities and average annual protein production was similar across the four CNV and
MNR treatments despite different protein levels and crop yields. A dilution effect could
also explain the lower Mg concentration in CNV maize compared to the MNR system.

Unlike maize, wheat was planted with full tillage in the RT-LEG and RT-MNR treat-
ments, so any effect of reducing tillage on wheat yields or quality would likely be a legacy
effect from previously no-till planted maize or soybeans. Reducing tillage had no effect
on wheat quality, even in the CNV system where it was no-till planted in the RT-CNV
treatment. This result is consistent with many of the nutritional studies comparing full-till
and reduced-till wheat [35,36,41–45,47,50,60,61,67,70], but it appears just as likely for re-
ducing tillage to have a significant negative effect [34,37,39,40,53,54,59,65,68,71] or positive
effect [46,52,56,58] on wheat quality (Table 1), suggesting some other factor such as wheat
variety or climate has a strong influence on how wheat responds to reduced tillage practices.

Wheat quality had a clearer response to N inputs, as the fertilized CNV wheat had
significantly higher protein levels than the unfertilized wheat grown in the two organic
systems. The CNV wheat, however, had lower starch and higher ash content compared
to the organic wheat, which led the CNV wheat to have significantly lower energy densi-
ties The magnitude of this difference was very low, <1%, and wheat typically comprises
a smaller proportion of livestock diet compared to corn, soy, and other forages, so it is
unlikely that livestock growth or lactation would be noticeably lower when fed CNV wheat.
Higher protein, higher ash, and lower carbohydrate contents may indicate differences in
nutrient uptake or resource partitioning in wheat kernels [95], with CNV wheat potentially
partitioning more resources to protein- and mineral-rich germ and/or aleurone tissue as a
response to higher N availability [96]. However, as quality measures were relatively consis-
tent between LEG and MNR wheat, differences in kernel composition may have mostly
resulted from cultivar characteristics [94,97] rather than management practices. Cultivar
differences in tissue partitioning may also account for the higher mineral concentrations
(Mg, P, and S) in the CNV wheat. Lower mineral concentrations in MNR wheat compared
to the LEG wheat. However, most likely resulted from a dilution effect due to the higher
wheat yields in the MNR system compared to the LEG. A dilution effect could similarly
explain why annual protein production was comparable for wheat grown in the RT-MNR
and FT-MNR treatments, despite significantly lower wheat yields in the RT-MNR treatment.
As wheat in the organic RT treatments was planted following full tillage, lower wheat
yields in the RT treatment likely resulted from some legacy effect of no-till planting maize
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or soybeans. It is possible that no-till planting preceding crops led to changes in nutrient
availability or weed pressure in the MNR system, which may have affected subsequent
wheat yields. The specific mechanisms behind this legacy effect are unknown, however,
and warrant further study if growers continue to adopt rotational no-till strategies.

Like wheat, oats were planted with full tillage in the RT-LEG and RT-MNR treatments,
so we expected oats to have a stronger response to cropping system than reducing tillage.
As expected, oats did not respond to reducing tillage in either of the organic systems, but
oat quality was also largely consistent between the LEG and MNR systems, consistent with
the analyses performed on oats harvested from the FST in 2014 [74]. Despite applying
over 200 kg N ha−1 before planting oats in the MNR system, the only significant quality
difference between oats in the LEG and MNR systems was 5.4% higher K levels in LEG
oats. Although N inputs appear to have increased oat yields in the MNR system, they did
not contribute to higher oat quality.

Although soybean quality was assessed based on fewer indicators than the other
grains, soybeans quality did differ between the CNV and organic systems. Protein levels
were significantly lower in the CNV soybeans compared to the LEG soybeans, likely driven
by a dilution effect, as soybean yields were nearly 2× higher in the CNV system. As
soybeans from all three systems had similar energy densities, it is likely that CNV soybeans
had higher starch or fat content which compensated for lower protein content. Lower
yields in the LEG system could have been driven by lower nutrient availability; however, as
soybeans can house N-fixing rhizobacteria, it is less likely that soybeans were N-limited in
the LEG system [98]. More likely, lower soybeans yield in the LEG system were driven by
other nutrient limitation (e.g., phosphorus) or by competition from weeds [99]. Like with
maize, soybeans were no-till planted in all the RT treatments, so we expected that soybean
quality would differ between tillage treatments; system-level factors (overall nutrient
availability, crop rotations, soybean varieties, etc.), however, appear to overshadow any
yield or quality response to no-till planting soybeans in any of the three systems.

Considering all the different management practices employed across the three crop-
ping systems and between tillage treatments, crop yields and the frequency of specific
crops are greater drivers of overall system quality than tillage practices or conventional
versus organic management. Although quality measures did significantly differ across the
three systems, differences in crop frequency and crop yields had a much greater impact on
long-term cumulative protein production. Regarding protein content in grain, the greatest
difference was between CNV and MNR maize, with CNV maize having 11% lower protein
concentrations than MNR maize. With similar maize yields in the CNV and MNR systems
(Table 2), protein production per hectare was significantly higher in maize grown in the
MNR system compared to the CNV system (Figure 1). However, cumulative maize protein
production was 3× higher in the CNV system because maize was planted 3–4× more often
than in the MNR system (Figure 1).

Between tillage treatments, higher cumulative protein production in the FT-CNV
system was mostly driven by differences in crop rotations between the FT-CNV and RT-
CNV treatments. In the years assessed (2008–2013, 2016–2020), wheat was planted 1–3 times
in each RT-CNV plot, but only one time in one of the FT-CNV subplots; substituting wheat
for just one year of high-protein soybeans could decrease cumulative protein production by
over 1.0 Mg ha−1, more than 10% of total protein production across the 11 years assessed.
This crop-rotation effect was even more noticeable in the MNR system, which supported
significantly higher grain yields than the LEG system yet produced 30% less cumulative
protein from grains. Forage crops more than compensate for this difference, and although
people do not consume forages directly, livestock that consume more forages tend to
produce higher quality dairy products [100].

As organically-raised livestock are usually fed more forages than conventionally-raised
livestock, organic dairy tends to be of higher nutritional quality (protein, omega-3 fatty
acids, and other metrics) than conventional dairy [100]. Even for conventional dairy, grains
generally comprise less than 20% of dairy cattle feed and may be completely absent from
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diets depending on the time of year, feed availability, and the type of dairy enterprise [101].
Although crude protein, starch content, and ruminal passage rates do affect the digestibility
of grains [101], the grain produced within all six FST treatments were of similar enough
and high enough nutritional quality to support productive dairy operations. Differences in
farming systems and tillage treatments would more likely affect the profitability of a dairy
operation by influencing grain yields (i.e., the lower grain yields in the LEG system) and
crop diversity (i.e., inclusion of forages in the MNR system) rather than by causing some
dramatic shift in grain quality. Therefore, while a mixed grain/forage cropping system may
not produce higher yields or quality of specific grains, the choice to include high-quality
forages in the crop rotation could play a greater role in improving the overall nutritive
value of organic-based diets for both livestock and people.

5. Conclusions

Our results suggest that reducing tillage did not significantly affect nutrient quality of
grains produced in either organic or conventional systems, although these results may be
unique to the climate and farming conditions where this study took place. More broadly,
this study highlights the importance of exploring grain quality in response to specific farm-
ing practices under different management systems. By comparing two organic systems
within one field experiment, this study clearly demonstrate how organic farming systems
are not all created equal, as changes to fertility inputs, crop rotations, and crop diversity
can significantly influence grain quality and overall protein productivity under organic
management. Although organic certification does require farmers to implement specific
management practices, not all organic farmers adopt the same suite of practices under the
same conditions [27,102]. Rather than making broad comparisons between organic and con-
ventional management, future research should focus on how specific conservation-based
practices can improve grain quality; such studies would help conventional and organic
farmers select the best practices to optimize long-term productivity and sustainability.
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Appendix A

Table A1. Summary of a Web of Science (© 2021, Clarivate Analytics) search using the terms “tillage” + “grain” + “quality”. The original search generated
1375 papers, which were filtered down to 38 studies based on the criteria that studies (A) included a side-by-side comparisons of reduced-till and conventional
tillage and (B) grain quality was measured as protein content and/or mineral content. Overall effect of reducing tillage on grain quality and yield are denoted as:
negative (−), positive (+), or no effect (.). CT = conventional tillage; RT = reduced till; NT = no-till; SS = subsoiling; VT = vertical tillage; rNT = rotational no-till;
MT = minimum till (i.e., reducing tillage frequency). n.a. = no yield measurements.

Crop Tillage Treatments Quality
Variable(s)

Quality
Response

Yield
Response

No.
Harvest Years Country Study

Barley CT, RT, NT protein, minerals − n.a. 3 Poland Woźniak et al., 2014a

Maize CT, RT (chisel), NT protein − − 8 Romania Cociu and Alionte, 2017
CT, RT, NT protein − − 3 Serbia Simić et al., 2020

CT, RT protein . n.a. 2 Pakistan Wasaya et al., 2018

Rapeseed CT, RT, NT protein . n.a. 1 Iran Vanda et al., 2009

Rice CT, RT protein . . 2 Turkey Çay, 2018

Soybeans CT, RT (chisel), NT protein − − 8 Romania Cociu and Alionte, 2017
CT, NT protein, minerals . . 2 USA Houx III et al., 2014

Triticale CT, RT (cultivate) minerals − n.a. 3 Poland Jaskiewicz 2019
CT, RT protein + . 2 Italy Lestingi et al., 2010

CT, RT, NT protein − − 3 Poland Woźniak 2016
CT, RT, NT protein + − 3 Poland Woźniak and Soroka 2014

Wheat CT, RT, NT protein − . 18 Italy Amato et al., 2013
CT, RT, NT protein . − 3 Poland Buczek et al., 2021

CT vs. RT (SS) protein . . 6 Italy Campiglia et al., 2015
CT, RT, NT protein − . 6 USA Carr et al., 2008

CT, RT (chisel), NT protein − − 8 Romania Cociu and Alionte, 2017
CT, NT protein − + 3 Italy Devita et al., 2007

rotary till, rotary till 2×, NT protein . . 2 China Ding et al., 2020
CT, RT (MT), NT protein . . 2 Algeria Djouadi et al., 2021

CT, RT (mulch till), NT minerals . n.a. 1 Serbia Dolijanović et al., 2019
CT, RT protein . − 5 Canada Fernandez et al., 2019
CT, NT protein . . 3 Poland Gawęda and Haliniarz, 2021
CT, NT protein + − 2 Romania Grigoras et al., 2012

CT, RT (disking) protein . . 3 Turkey Gürsoy et al., 2010
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Table A1. Cont.

Crop Tillage Treatments Quality
Variable(s)

Quality
Response

Yield
Response

No.
Harvest Years Country Study

Wheat CT, RT (disking) protein . . 4 Russia Korostylev et al., 2019
CT, NT protein, minerals + . 1 China Li et al., 2020
CT, NT protein − . 3, 6 Spain López-Bellido et al., 1998; 2001

CT, RT (VT), NT protein − . 1 Argentina Miravalles et al., 2013
CT, NT protein + + 2 Italy Pagnani et al., 2019

CT, RT (disking) protein + . 2 Poland Sulek et al., 2019
CT, NT protein − − 1 China Sun et al., 2015

CT, RT, NT protein . . 4 Turkey Taner et al., 2015
CT (rotary-till), RT (rNT) protein . + 7 China Tang et al., 2013

CT, RT (cultivate), NT protein − – 3 Poland Woźniak and Rachoń, 2020
CT, RT (cultivate), NT minerals . . 3 Poland Woźniak and Stępniowska, 2017
CT, RT (cultivate), NT protein, minerals . − 1 Poland Woźniak et al., 2014b
CT, RT (cultivate), NT protein − . 6 Poland Woźniak et al., 2015

CT, RT, NT protein − − 2 Iran Yousefian et al., 2021
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Appendix B

Additional Methods and Results for Estimated Above-Ground Nitogen Inputs

Above-ground nitrogen (N) inputs were estimated from inorganic fertilizers, com-
posted manure, and terminated hairy vetch cover crops. N inputs from inorganic fertilizers
were calculated from records of at-planting and side-dress applications to CNV maize and
wheat. N inputs from composted manure were estimated based on manure application
rates and total N analysis performed by the Agricultural Analytical Services Laboratory
at the Pennsylvania State University (University Park, PA, USA). Above-ground N inputs
from vetch cover crops were estimate based on aboveground vetch biomass collected
immediately before: (1) plowing in the FT systems; (2) herbicide burn-down in the RT-CNV
system; or (3) rolling/crimping in the RT organic systems. Following biomass collection
(three 0.25 m2 quadrats per plot), vetch samples were dried at 48 ◦C for a minimum of
three days then analyzed for total N content by dry combustion [83]. Total N in vetch
samples was analyzed following the same combustion method in all years, but the analysis
was performed by three different laboratories: from 2008–2010, N analysis was performed
by the Agricultural Analytical Services Laboratory at the Pennsylvania State University
(University Park, PA, USA); from 2011–2013, the Rodale Institute (Kutztown, PA, USA);
and from 2016–2020, by the Cornell Nutrient Analysis Laboratory (Ithaca, NY, USA). We
used non-parametric Kruskal–Wallis tests (krustal.test) followed by Dunn tests for post-hoc
mean comparisons (dunnTest from the “FSA” package [103]) to assess differences in N
inputs for each crop across the cropping systems and between tillage treatments.
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