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Long-term manure amendments 
reduced soil aggregate stability 
via redistribution of the 
glomalin-related soil protein in 
macroaggregates
Hongtu Xie1, Jianwei Li2, Bin Zhang3, Lianfeng Wang4, Jingkuan Wang3, Hongbo He1 & 
Xudong Zhang1,5

Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil 
aggregates, it is however remains unclear whether long-term intensive manure amendments alter 
soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long 
fertilization experiment in northeast China, this study examined the impact of long-term manure 
input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their 
respective allocations in four soil aggregates (>2000 μm; 2000–250 μm; 250–53 μm; and <53 μm). 
The treatments include no fertilization (CK), low and high manure amendment (M1, M2), chemical 
nitrogen, phosphorus and potassium fertilizers (NPK), and combined manure and chemical fertilizers 
(NPKM1, NPKM2). Though SOC, GRSPe and GRSPt in soil and SOC in each aggregate generally 
increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes 
with manure input. Both GRSP in macroaggregates (2000–250 μm) were significantly higher under low 
manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of 
soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under 
manure amendments. The regulatory process of GRSP allocations in soil aggregates has important 
implications for manure management under intensive agriculture.

Glomalin is a glycoproteinaceous substance that is produced by arbuscular mycorrhizal fungi (AMF)1,2. 
Glomalin is usually quantified in soils as glomalin-related soil protein (GRSP)2–5, which is a component 
of the hyphal walls of AMF and is likely released into the soil after death6; thus, GRSP subsequently 
contributes to the linkage between soil particles and the stabilization of aggregates. Positive correlations 
between the GRSP concentration and the amount of water-stable aggregates have been documented2,3,7. 
In addition, glomalin is relatively recalcitrant and has a long residence time in the soil to contribute to 
stable carbon storage8,9; microbial-derived carbon inputs to soils are being recognized as increasingly 
important in the long-term storage of carbon and nitrogen10.
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Despite recalcitrant features, GRSP can be sensitive to various agricultural management practices, 
such as tillage11–14, cropping treatments11,15, and land use change16–18. Chemical and organic fertilizations 
are common practices and play a key role in maintaining long-term agricultural production; however, 
the effects of different types of fertilization on the changes in glomalin concentrations have received very 
limited attention. For example, long-term fertilization, especially amendments with manure and straw, 
increase soil GRSP accumulation19,20. However, the effects of different amounts of manure and mineral 
fertilizer and their interactions on GRSP dynamics have not been elucidated.

Aggregates are composed of primary mineral particles and organic binding agents21. Therein, arbus-
cular mycorrhizal fungi produce large amounts of insoluble glycoprotein, glomalin and polysaccharides, 
which contribute to aggregate stability2,4. Furthermore, many studies have examined the glomalin con-
centration in soil aggregates, but most studies only focused on the 1000- to 2000-μ m aggregates2,22. It was 
found that approximately 20% of GRSP remained in the fine fraction (< 53 μ m)12. Other study indicated 
that tillage reduced the GRSP content in all of the aggregate classes (2000–1000 μ m, 1000–500 μ m and 
250 μ m)11. These results collectively suggest a possible strong correlation of glomalin with aggregate 
stability2. However, the underlying mechanism of this tight association between GRSP and aggregate 
stabilization remains poorly investigated. Furthermore, understanding factors controlling GRSP produc-
tion such as fungal community composition, fungal physiology, and cell biology aspects as well as soil 
biota, soil physicochemical characteristics, and fungus–host plant species combinations will elucidate soil 
aggregation in crop production systems23.

Long-term experiments provide a realistic and effective means for obtaining valuable information 
that is required to maintain the soil quality and health by determining changes in the soil properties and 
processes24,25. Soil fertility degradation has long been a major concern in China due to the replacement 
of organic fertilizers by chemical fertilizers26. To monitor changes in soil fertility, a number of long-term 
experiments were initiated in typical agricultural regions in China in the 1980’s with the application of 
chemical fertilizer, organic manure alone or both in combination26. One of these experiments was set up 
in a brown soil region located in Liaohe Plain to explore the effect of long-term fertilization on the soil 
properties and crop yield27. Soil aggregate formation and stability are key variables for investigation; how-
ever, the role of GRSP on soil aggregates during long-term fertilization experiments has received little 
attention in this carbon-rich and high-productivity agricultural region, which hindered our understand-
ings of how management practices alter GRSP concentrations in soil aggregates and how to maintain soil 
aggregate stability, fertility and productivity under different fertilization practices.

Based on a three-decade long fertilization experiment in a typical brown soil in Northeast China, 
we collected surface soil samples (0–20 cm), quantified soil aggregate and GRSP concentrations, and 
compared the long-term dynamics of GRSP in different soil aggregate sizes under a suite of long-term 
continuous chemical and organic fertilizer treatments. The objectives of this study were to examine the 
effects of the long-term application of mineral and organic fertilizers alone or in combination on the 
concentration and allocation of GRSP in different aggregate classes. This study is expected to clarify on 
the relationship between GRSP in different soil aggregate sizes and aggregate stability for the sake of 
optimal management practices in this region.

Results
Long-term manure inputs on aggregate distribution and stability. The proportional distri-
bution of aggregates in soil generally followed a descending order in each fertilization regime: small 
macroaggregate >  microaggregate >  silt +  clay >  macroaggregate (Table 1). The small macroaggregate 
comprised the largest proportion of the soil (35.9–49.1%), and the large macroaggregate accounted for 

Treatment†

Aggregate distribution (%)

MWD(mm)
Large macroaggregate 

(>2000 μm)
Small macroaggregate  

(2000–250 μm)
Microaggregate  

(250–53 μm) Silt + clay(<53 μm)

CK 14.8 ±  2.4ab‡ 37.9 ±  2.0b 26.9 ±  1.1ab 16.8 ±  3.5ab 0.99 ±  0.11b

NPK 13.6 ±  1.7abc 35.9 ±  5.4b 29.6 ±  1.3a 18.4 ±  2.5a 0.93 ±  0.12b

M1 18.9 ±  5.1a 44.7 ±  4.0ab 21.6 ±  4.7b 11.6 ±  1.4b 1.20 ±  0.23a

M1NPK 17.4 ±  2.3ab 46.3 ±  1.7ab 20.6 ±  1.0b 12.8 ±  0.6ab 1.17 ±  0.10a

M2 10.8 ±  0.4c 49.1 ±  4.7a 26.2 ±  3.0ab 12.3 ±  2.1b 0.88 ±  0.07b

M2NPK 11.4 ±  1.1bc 44.4 ±  3.8ab 26.8 ±  1.6ab 15.2 ±  1.4ab 0.94 ±  0.09b

Table 1.  Mean (±SD) proportions of four aggregates in soil (%)under long-term fertilization in 
Liaoning, China. Soil samples were collected in 2008. †CK, no fertilizer; NPK, mineral fertilizers; M1 and 
M2, organic manure applied at lower and higher level, respectively; M1NPK, combination of M1 and NPK; 
M2NPK, combination of M2 and NPK. ‡Different letters within each column indicate significant difference 
between fertilization treatments at 0.05 (n =  3).
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11.4% to 18.9%. Different fertilization regimes altered the aggregate percentages in the soil. Organic 
manure application alone or in combination with fertilizer (M1, M1NPK, M2 and M2NPK) increased 
the proportion of the small macroaggregate (P <  0.1) and decreased the percentages of microaggre-
gate and silt +  clay (P <  0.1) compared to CK and NPK. High amounts of organic manure input (M2, 
M2NPK) tended to diminish the proportion of large macroaggregate compared to the other treatments. 
Furthermore, NPK did not change the distribution of aggregates compared to CK.

Compared to CK, NPK, M2 and M2NPK, low-manure application (M1 and M1NPK) increased sig-
nificantly MWD by approximately 20% (P <  0.05). Compared to CK, NPK, M2 and M2NPK decreased 
MWD by 5%, 5% and 11%, respectively, but these effects are not statistically significant.

Long-term manure inputs on the SOC in bulk soil and aggregates. Generally, organic manure 
application significantly increased the SOC concentration in bulk soil (P <  0.05). There were significant 
differences in the SOC between CK and all fertilization treatments. Compared to CK, SOC increased by 
25.9% under NPK and by 30.8% to 47.7% under organic manure treatment alone or combined manure 
and chemical fertilizers (M2NPK >  M1NPK >  M2 >  M1 >  NPK >  CK) (Table 2).

Across all fertilization treatments, SOC concentration in macroaggregates and microaggregates showed 
little difference, but SOC concentration in sum of macroaggregates and microaggregates (> 53 μ m) 
and silt +  clay fractions (< 53 μ m) were significantly different (P <  0.05, Fig.  1). Fertilizer application 
significantly altered SOC concentration in each aggregate fraction with a descending order as M2, 
M2NPK >  M1, M1NPK >  NPK >  CK. Compared to CK, SOC showed a significantly greater increase 
under organic manure application alone or in combination with chemical fertilizers than chemical fer-
tilizers alone (P <  0.05, Fig. 1).

Long-term manure inputs on the GRSP in soil aggregates. Similar to the patterns of SOC 
changes under fertilization, long-term fertilization significantly increased GRSPt and GRSPe concentra-
tions in bulk soil (M2NPK, M2, M1NPK >  M1 >  NPK >  CK) (Table  2). The M1 treatments showed a 

Treatments

GRSPe GRSPt SOC

GRSPe/GRSPt GRSPt/SOCmg g−1

CK 0.24 ±  0.02c 1.41 ±  0.08c 7.95 ±  0.15d 0.17ab 0.18b

NPK 0.35 ±  0.05ab 1.80 ±  0.20b 10.01 ±  0.09c 0.20a 0.18b

M1 0.30 ±  0.01b 1.86 ±  0.06b 10.40 ±  0.10b 0.16ab 0.18b

M1NPK 0.37 ±  0.02a 2.46 ±  0.07a 11.65 ±  0.25a 0.15b 0.21a

M2 0.38 ±  0.02a 2.46 ±  0.13a 11.55 ±  0.15a 0.16b 0.21a

M2NPK 0.38 ±  0.01a 2.45 ±  0.06a 11.75 ±  0.05a 0.16b 0.21a

Table 2.  Mean (±SD) concentrationsof GRSPt, GRSPe and SOC (mg g−1) in bulk soil in different 
fertilization treatments in Shenyang Agricultural University experiment in Liaoning, China. Soil samples 
were collected in 2008.

Figure 1. SOC content (mg g−1) in soil aggregates under different fertilization treatments in Shenyang 
Agricultural University experiment in Liaoning, China. The different lowercase letters represent significant 
fertilization effect within each aggregate size (P <  0.05), and the different uppercase letters denote significant 
effect of aggregate sizes (P <  0.05). Error bars denote standard deviations (n =  3). The abbreviations of 
fertilization treatments are the same as presented in Table 1.
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lower GRSPe content and higher amount of GRSPt compared with NPK treatments. Chemical fertilizer 
treatment alone led to a greater ratio of GRSPe/GRSPt (NPK >  M2, M1NPK, M2NPK). In general, high 
manure amendments induced significantly greater GRSPt/SOC ratios than other treatments (M2NPK, 
M2, M1NPK >  M1, NPK, CK).

Long-term fertilization significantly increased SOC allocation within each aggregate than no fertili-
zation (M2NPK >  NPK >  CK, Fig. 1), whereas, fertilization effects on GRSP allocations were highly var-
iable with different aggregate sizes. The above mentioned pattern of SOC allocation was true for GRSPe 
in macroaggregates only (Fig. 2) and true for GRSPt in silt +  clay fraction only (Fig. 3).

Discussion
Manure amendments on soil aggregate content and stability. Generally, the combined applica-
tion of organic manure and fertilizer increased the proportions of small macroaggregate and decreased 
the proportions of microaggregate in the soil28,29. In our study, changes in the proportions of soil aggre-
gates varied with different fertilization treatments. For instance, NPK treatment decreased the propor-
tion of small macroaggregates, but manure or manure plus chemical fertilizers increased the same size 
aggregate. In contrast, NPK increased the proportion of microaggregates, but manure or manure plus 
chemical fertilizers decreased the same size aggregate.

As a measure of aggregate stability, mean weight diameter (MWD) has been used to assess manure 
amendments on soil aggregate stability. A recent study indicated that as compared to CK, 2-year 
long-term manure addition (60 Mg·hm−2) increased the MWD at the 0–5cm layer in soil type of Typic 

Figure 2. GRSPe content (mg g−1) in soil aggregates under different fertilization treatments in Shenyang 
Agricultural University experiment in Liaoning, China. The different lowercase letters represent significant 
fertilization effect within each aggregate size (P <  0.05), and the different uppercase letters denote significant 
effect of aggregate sizes (P <  0.05). Error bars denote standard deviations (n =  3). The abbreviations of 
fertilization treatments are the same as presented in Table 1.

Figure 3. GRSPt content (mg g−1) in soil aggregates under different fertilization treatments in Shenyang 
Agricultural University experiment in Liaoning, China. The different lowercase letters represent significant 
fertilization effect within each aggregate size (P <  0.05), and the different uppercase letters denote significant 
effect of aggregate sizes (P <  0.05). Error bars denote standard deviations (n =  3). The abbreviations of 
fertilization treatments are the same as presented in Table 1.
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Haplargids30, whereas, this study showed that three-decade high manure application decreased the MWD 
and consequently resulted in lower aggregate stability as compared to CK. This contradiction may be 
due to the accumulation of large macroaggregates that were derived from different sources of manure 
materials. In this study, a very high amount of manure amendment provided POC31, which coated mac-
roaggregates. Long-term manure applications with a large amount of organic input increased the mac-
roaggregate dispersion and thus resulted in a decrease in aggregate stability32. However, other studies 
suggest the MWD increased after 1 year manure application and decreased after 5 years and increased 
again after 12 years, indicating that long-term manure application (1 Mg·hm−2) increase soil aggregate 
stability33. In addition, there is unclear relationships between aggregate stability and rates of organic input 
by analyzing the literatures due to different factors such as the quality, quantity and timing of organic 
matter addition34. In particular, few studies offered mechanistic understanding of manure amendments 
and soil aggregate stability. In the following discussions, this study addressed the fertilization effect on 
SOC, GRSP allocations in different soil aggregates and particularly examined the possible mechanisms 
of GRSP redistribution driving the change of soil aggregate stability.

Manure amendments on SOC allocation in soil aggregates. Manure application has long been 
recognized as an effective way to increase SOC content29,32,35–37,40. This study showed that manure appli-
cation alone or mixed with chemical fertilizers significantly improved the total SOC content compared 
to that of CK and NPK. On the other hand, the application of NPK fertilizers also significantly increased 
the SOC content compared to that of CK, which is driven by greater yield and biomass return to the 
SOC pool37. The reason for this result is that the manure input directly increased the soil organic matter 
content and induced the additional input of organic material to soils due to higher crop productivity 
under fertilization37–39.

This study further demonstrated that fertilizer application significantly increased the SOC content in 
every aggregate fraction compared with CK. Especially, manure and manure combined with fertilizer 
enhanced SOC concentration in macroaggregates and microaggregates (P <  0.05), indicating that the 
manure-derived C was more preferentially accumulated in these aggregate fractions37. For all of the 
fertilization treatments, the lowest SOC contents were found in the silt +  clay fraction. A similar obser-
vation was reported through long-term fertilization on a Mollisol36. These observations are most likely 
associated with low or no binding capacity of SOC by free silt particles36, and also the limited protection 
of SOC by silt and clay41. Overall, this study revealed that manure application alone or in combination 
with chemical fertilizer increased SOC through their effects on the formation of macroaggregates. This 
result is consistent with a former study that showed that animal manure application increased SOC 
and consequently the formation of macroaggregates38,41,42. Given the relatively stable soil mineralization 
rate indicated in these studies, we speculate that the SOC change is directly related to C input from 
manure38,43. In addition, the low temperature in winter restricts the decomposition of manure38.

Manure amendments on GRSP in bulk soil. As an important component in SOC, the concen-
trations of both GRSPe and GRSPt were enhanced significantly under treatments with manure input 
(P <  0.05; Table  2), which echoed with several recent studies2,19,20,44–46. The main reason may lie in the 
release of the growth-stimulating substances due to increased soil biological activities and nutrients from 
organic manure6,19,46. On the other hand, the relatively low amount of GRSPt under NPK treatment com-
pared with manure amendment treatments most likely due to the inhibition of AMF development by 
chemical fertilizers20,46. However, the greater GRSPe/GRSPt under NPK than manure amendment treat-
ments could be caused by the immediate and pronounced effect of nutrient availability on GRSPe pro-
ductions via part of AMF groups under NPK treatment. It thus remains to be further explored whether 
only some species of AMF development are more sensitive to chemical nutrient input than other species.

The SOC content is often a good predictor of GRSP9. In our study, the GRSPt/SOC changed from 0.18 
to 0.21 when manure was applied either with chemical fertilizers or at a higher input rate. This pattern 
of change under fertilization is much narrower in quantity in comparison to former studies in agroeco-
system (0.14 to 0.27)44 and in different land use types (0.21 to 0.29)47. This current result also showed 
a positive correlation between the GRSP and SOC content. This relationship was affected by land use 
type and soil type such as in pastures48, Mediterranean steppes17, North American soils49 and a semiarid 
rangeland50. The exceptions to this trend are the Costa Rican study51 and a strong acid soil result from 
the narrow range of SOC52. In our study, a high-manure amendment did not increase the contribution of 
GRSPt to SOC due to parallel increases in both GRSPt and SOC. This result clearly indicates that GRSP, 
as an important component of soil organic matter and binding agents53, can contribute to soil carbon 
sequestration under long-term manure amendments54.

Manure amendments on GRSP allocation in soil aggregates. As we revealed above, 
three-decade-long manure amendments combined with mineral fertilizer application significantly 
increased soil aggregate stability, while the underlying mechanisms are not well identified. This study 
found that long-term manure amendment combined with chemical fertilizer application significantly 
increased the GRSP content in all soil aggregate fractions except for microaggregates (Fig.  1). In par-
ticular, intermediate amount of manure input in addition to chemical fertilizers (M1NPK) increased 
the content of macroaggregates and the overall soil aggregate stability (Table  1). These results suggest 
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that glomalin accumulation influenced soil stability via its redistribution in macroaggregates under 
long-term fertilization. In all aggregate fractions, the relationship of GRSP and SOC showed significant 
trend (Fig. 4. R2 =  0.431 and R2 =  0.317, P <  0.01). The accumulation of GRSP in total SOC is possibly 
attributed to the positive role of AMF in glomalin production at presence of long-term and relatively 
large amount of manure amendments in soils6,19,55.

Although the application of organic manure positively affected the accumulation of GRSP in aggre-
gates, the highest amount of organic manure did not result in the highest concentration of either GRSPe 
or GRSPt. In fact, the contents of GRSPe and GRSPt in the small macroaggregates were significantly 
lower under high manure input treatments than low manure input treatments. Thus, a high amount of 
organic manure amendment exceeding a certain threshold may otherwise reduce GRSP content and then 
decrease the soil aggregate stability by altering GRSP allocations to macroaggregates (Table 1).

Methods
Site description and soil sampling. This study was conducted on a long-term fertilization trial that 
was initiated in April 1979 at the Experimental Station of Shenyang Agricultural University (41°48´N, 
123°33’E) in Liaoning Province, China. The annual mean temperature ranged from 7.0 to 8.1 °C, the 
annual mean precipitation ranged from 574 to 684 mm, and the average frost-free period was 147 to 164 
days in the past 30 years. The soil is a Hapli-Udic Cambisol (FAO Classification). Prior to this experi-
ment, the concentration of SOC was 9.2 g kg−1, the total nitrogen concentration was 0.8 g kg−1, and the 
soil pH was 6.5 (soil:water =  1:2.5) at the top 20-cm depth.

The current long-term experiment consists of a randomized complete block design with three blocks 
and eighteen fertilization treatments. The area of one individual plot was 160 m2. The following six treat-
ments were included in this study: (1) no fertilizer (CK); (2) chemical nitrogen, phosphorus and potas-
sium fertilizers (NPK); (3) low manure amendment (M1); (4) combination of M1 and NPK (M1NPK); 
(5) high manure amendment (M2); and (6) combination of M2 and NPK (M2NPK). M1 and M2 refer 
to composted pig manure applied at the rate of 13.5 and 27 Mg hm−2 yr−1 (organic matter 119.6 g kg−1; 
total N 5.8 g kg−1; P 3.6 g kg−1; K 9.0 g kg−1), respectively; NPK denotes chemical N (urea), P (multiple 
superphosphate), and K (potassium sulfate) fertilizers added at the rate of 135, 29, and 56 kg hm−2 yr−1, 
respectively. The plots have a cropping system of monoculture maize (Zea mays L.). Maize was planted 
in late April and harvested in late September every year. The mineral fertilizers were evenly distributed 
on the soil surface by hand and immediately incorporated into the soil by tillage before sowing in April. 
Dry-composted pig manure was spread over the soil surface after harvesting in October. Surface soil 
samples (0–20 cm) from each plot were collected in October 2008 prior to manure amendment. The 
field-moist soil samples were gently broken apart, sieved to pass through a 5-mm sieve, and air-dried 
for physiochemical analysis.

Water-stable aggregate fractionation. Four aggregate-size fractions were separated by wet siev-
ing according to Elliott’s method56. and they were named as large macroaggregate (> 2000 μ m), small 
macroaggregate (2000–250 μ m), microaggregate (250–53 μ m), and silt +  clay fraction (< 53 μ m). Briefly, 
100 g of soil (oven-dry equivalent weight) was submerged in deionized water on top of a 2000-μ m sieve 
overnight at room temperature. The aggregates were then separated by moving the sieve up and down 
50 times over a period of 2 min. Then, the intact aggregates were washed off the sieve and collected in 
an aluminum pan. The remaining soil slurry was passed through the 250- and 53-μ m sieves, while the 
sieving procedure described above was repeated. The silt +  clay fraction was separated by centrifuging 
(2500 ×  g, 10 min) the soil suspension that passed through the 53-μ m sieve. After being oven dried 

Figure 4. The regression between SOC and GRSP across different aggregate fractions. 
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at 50 °C, the four classes of aggregates were weighed and stored at room temperature for future use. 
The mean weight diameter (MWD) represents fraction of the sample on the sieve times mean inter-
sieve aperture and was used to indicate the soil aggregate stability57. The total carbon in the soil aggre-
gates was determined by dry combustion using an element analyzer Vario Elementar III (Elementar 
Analysensysteme GmbH, Hanau, Germany). Because these soil samples were free of carbonates, the total 
carbon content was equivalent to the soil organic carbon content.

GRSP extraction and determination. GRSP was extracted according to the procedures described 
by Wright and Upadhyaya2. Briefly, extractable GRSP (GRSPe) was extracted from 1 g of 2-mm-sieved 
soil with 8 ml of a 20 mM citrate solution at pH 7.0 by autoclaving at 121 °C for 30 min, and then the 
supernatant was removed by centrifugation at 10,000 ×  g for 5 min. The total GRSP (GRSPt) was extracted 
with 8 ml of 50 mM citrate solution at pH 8.0 by autoclaving at 121 °C for 60 min, then centrifuged at 
10,000 ×  g for 5 min to remove the supernatant. After each cycle, the sodium citrate was replenished 
for the extraction again until the GRSP content of supernatant was above the detection limits (ca. 2 mg 
ml−1). The supernatant was decanted and stored at 4 °C until being analyzed. The protein content was 
determined by the Bradford assay58 using bovine serum albumin as a standard.

Statistical analysis. The significant difference of the effects of aggregate size and the fertilization 
treatment on the SOC, GRSPt, GRSPe and GRSPt/SOC were assessed using one-way analyses of variance 
(ANOVA). Post hoc analyses were conducted using LSD tests. A statistical significance was set at P <  0.05 
or P <  0.1. All of the statistical analyses were implemented in the R program59.
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