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Proteases of SARS-CoV-2 and Other
Coronaviruses: A Preliminary Study
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1 Department of Agricultural and Environmental Sciences, Food Science Program, College of Agriculture, Tennessee State
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In the 21st century, we have witnessed three coronavirus outbreaks: SARS in 2003,
MERS in 2012, and the ongoing pandemic coronavirus disease 2019 (COVID-19).
The search for efficient vaccines and development and repurposing of therapeutic
drugs are the major approaches in the COVID-19 pandemic research area. There
are concerns about the evolution of mutant strains (e.g., VUI – 202012/01, a mutant
coronavirus in the United Kingdom), which can potentially reduce the impact of the
current vaccine and therapeutic drug development trials. One promising approach to
counter the mutant strains is the “development of effective broad-spectrum antiviral
drugs” against coronaviruses. This study scientifically investigates potent food bioactive
broad-spectrum antiviral compounds by targeting main protease (Mpro) and papain-
like protease (PLpro) proteases of coronaviruses (CoVs) using in silico and in vitro
approaches. The results reveal that phycocyanobilin (PCB) shows potential inhibitor
activity against both proteases. PCB had the best binding affinity to Mpro and PLpro
with IC50 values of 71 and 62 µm, respectively. Also, in silico studies with Mpro and PLpro

enzymes of other human and animal CoVs indicate broad-spectrum inhibitor activity of
the PCB. As with PCB, other phycobilins, such as phycourobilin (PUB), phycoerythrobilin
(PEB), and phycoviolobilin (PVB) show similar binding affinity to SARS-CoV-2 Mpro and
PLpro.

Keywords: food bioactive constituents, broad-spectrum inhibitors, coronaviruses, SARS-CoV-2, COVID-19, main
protease, papain-like protease

INTRODUCTION

Coronaviruses (CoVs) belongs to the subfamily of Orthocoronavirinae, family Coronavidae, order
Nidovirales. They are large (average diameter of 120 nm), enveloped, positive-sense single-stranded
RNA viruses with a genome size of ∼26 to 32 kb (Woo et al., 2010). Based on antigen cross-
reactivity and genetic makeup, four subgroups (alpha, beta, gamma, and delta) are subdivided into
26 different species of CoVs (Cleri et al., 2010). CoVs cause diseases in mammals and birds; alpha
and beta group CoVs are pathogenic to humans (Paules et al., 2020). The seven CoVs that can cause
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infectious diseases in humans are HCoV-229E, HCoV-NL63,
HCoV-OC43, HCoV-HKU1, severe acute respiratory syndrome
coronavirus (SARS-CoV), Middle East respiratory virus
coronavirus (MERS-CoV), and 2019-nCoV (2019-novel
coronavirus) or SARS-CoV-2 (Hamre and Procknow, 1966;
McIntosh et al., 1967; Drosten et al., 2003; van der Hoek et al.,
2004; Woo et al., 2005; Bermingham et al., 2012; Wu F. et al.,
2020). The first four common CoVs persistently circulate in
humans and are responsible for 10–30% of common colds (Paules
et al., 2020). The other three deadly viruses are etiological agents
of fatal respiratory syndromes SARS, MERS, and coronavirus
disease 2019 (COVID-19), respectively. The SARS epidemic
in 2003 ended with 8098 reported cases, 774 deaths (fatality
rate 9.7%), whereas the MERS outbreak in 2012 caused 2494
reported cases, 858 deaths (fatality rate 34%) (World Health
Organization (WHO), 2003; Alfaraj et al., 2019). COVID-19, the
current pandemic outbreak, first identified in 2019, report >37.1
million confirmed cases with >1.07 million deaths (fatality
rate 2.9%) as of October 12, 2020 (World Health Organization
(WHO), 2020). Avian infectious bronchitis virus (IBV), feline
infectious peritonitis virus (FIPV), canine CoV, and porcine
transmissible gastroenteritis virus (TGEV) cause respiratory and
enteric diseases in farm and domestic pet animals (Pratelli, 2006;
Cavanagh, 2007; Pedersen, 2009; Odend’hal, 2012).

Till now, there are no approved vaccines and therapeutic
drugs for COVID-19 or other human coronavirus infections
and a lack of enough clinical trial data to make treatment
decisions. Although vaccines have been developed against animal
viruses IBV, canine CoV, and TGEV to help prevent serious
diseases (Park et al., 1998; Carmichael, 1999; Liu and Kong,
2004), there are some potential problems, such as recombination
events between field and vaccine strains, the emergence of novel
serotypes, and antibody-dependent enhancement remain. The
rapid development of vaccines and repurposing of approved
antivirals drugs (e.g., remdesivir) are major clinical approaches
of a pandemic preparedness plan. The development of broad-
spectrum antiviral agents that are effective against a wide range
of CoVs and other classes of viruses, including emerging ones,
could be a promising strategy (Bekerman and Einav, 2015; Fauci
and Morens, 2016; Cho and Glenn, 2020).

Broad-spectrum antiviral targeting strategies can be classified
into two categories: (i) entry inhibitors that interact with existing
virus particles outside of cells and prevent infection (Hangartner
et al., 2006) and (ii) replication inhibitors aimed at stopping viral
genome replication to curtail production of new virus particles
(De Clercq, 2004). The S glycoprotein of coronaviruses, the
main determinant of host cell attachment and viral entry, is not
well conserved between HCoVs (Totura and Bavari, 2019). On
the other hand, CoV non-structural proteins (nsps) are highly
conserved components of the coronavirus life cycle that mediate
viral replication (Totura and Bavari, 2019). Literature studies
report the following SARS-CoV-2 nsp targets; main protease
(Mpro), papain-like protease (PLpro), Nsp3, RdRp, Helicase,
Nsp14, Nsp15, Nsp16, N protein to inhibit virus replication (Wu
C. et al., 2020). Proteolytic processing of viral polyproteins into
functional nsps by two viral proteases, the Mpro and PLpro, is an
important event of the CoV life cycle. The Mpro acts on minimum

11 cleavage sites of replicase 1ab, ∼790 kDa; at recognition
sequence Leu-Gln↓ (Ser, Ala, Gly) (↓ indicates cleavage site),
most cleavage sites block viral replication (Zhang et al., 2020).
PLPro enzyme hydrolyses the peptide bond at the carboxyl side of
glycine (P1 position) and releases nsp1, nsp2, and nsp3 functional
proteins, which play a key role in viral replication (Rut et al.,
2020). Therefore, these proteases would be potential targets for
the development of broad-spectrum antiviral drugs. CoVs Mpro

and PLpro crystal structures are available for public access in the
protein data bank (PDB).

Natural food bioactive compounds are gaining importance
as supplementary antiviral therapeutic compounds in the
modern healthcare sector because of their lower toxicity and
fewer side effects, additional health benefits (antioxidant, anti-
inflammatory, and immunomodulation activities), and potential
use in conjunction with preexisting therapies. Several literature
studies report antiviral properties of food bioactive compounds
against CoVs and other viruses (Table 1; Ghildiyal et al., 2020;
Mani et al., 2020). In view of the issues posed above, identifying
natural food bioactive broad-spectrum antiviral agents against
the CoVs is a more reasonable and attractive prospect and could
provide an effective first line of defense against future emerging
CoVs related diseases. Herein, we report the phycobilins as potent
food bioactive broad-spectrum inhibitor compounds against
Mpro and PLpro of SARS-CoV-2 and other CoVs via in silico and
in vitro approaches.

MATERIALS AND METHODS

In silico Screening of Inhibitor
Compounds
Preparation of Protein and Ligand for Docking
The crystal structures of Mpro (PDB ID – 6LU7) and PLpro of
SARS-CoV-2 (PDB ID – 6WUU) and other CoVs used in this
study were obtained from the RCSB PDB. Ligand structures
were obtained from Pubchem and Chemical Entities of Biological
Interest (ChEBI) as SDF format, Open Babel was used for format
transformation or 3-D coordinate generation for the uploaded
files (O’Boyle et al., 2011). The MGLTools were used to delete
other chains, and heteroatoms (included water), adding missing
atoms, hydrogens, and charges. Further, the pdbqt files were
prepared for proteins and ligands binding.

Molecular Docking and Molecular Simulation Studies
Autodock Vina was used as a docking engine. It is critical
to define the docking grid box appropriately due to the
small molecule docking procedure (Trott and Olson, 2010).
The docking box is defined as the center of native ligand
coordinates with 40 Å × 40 Å × 40 Å in length to include
the residues of the entire cavity, and the exhaustiveness level
was set on 12 with number of modes 10. For visualization,
the docking results PDBQT files were exported, and docked
protein-ligand complex structures were visualized using Pymol.
Active site residues within 3 or 3.5 Å of ligand and polar
contacts were determined with this same tool. The ligand
docking procedure was validated by redocking of the native

Frontiers in Microbiology | www.frontiersin.org 2 June 2021 | Volume 12 | Article 645713

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-645713 June 4, 2021 Time: 17:58 # 3

Pendyala et al. Broad Anti-Coronavirus Activity of Phycobilins

TABLE 1 | Antiviral properties of selected food bioactive constituents.

Bioactive
compound

Antiviral activity References

Phycocyanobilin Spirulina extract exhibited anti-flu efficacy
against wide range of influenza viruses with
EC50 values from 0.58 to 1.17 mg/mL.

Chen et al.,
2016

Quercetin Inhibited hepatitis C virus production almost
completely (>95%) at concentration of
10 µM.

Bachmetov
et al., 2012

Riboflavin In combination with poly r(A-U) showed 7 to
12-fold antiviral activity against human
foreskin fibroblast-vesicular stomatitis virus

Jamison
et al., 1990

Cyanidin Cyanidin-3-sambubiocide was found to be a
potent inhibitor for H1N1 neuraminidase (NA)
activity with IC50 value 72 µM.

Kannan
and
Kolandaivel,
2018

Daidzein Exhibited anti-dengue activity with
IC50 = 142.6 µg mL−1 against DENV-2.

Zandi et al.,
2011

Genistein Reduced hepatitis B virus production with an
IC50 value of 33 and 46 µM for human and
macaque fibroblasts, respectively.

LeCher
et al., 2019

Catechin Catechins (−)-epigallocatechin gallate
(EGCG), (−)-epicatechin gallate (ECG) were
identified as potent inhibitors of influenza virus
replication with EC50 of 22–28 and
22–40 µM, respectively.

Song et al.,
2005

Resveratrol MERS-CoV titer reduced 4 logs by resveratrol
treatment at 250 µM concentration after 48 h
of infection.

Lin et al.,
2017

Curcumin Curcumin and its derivatives showed antiviral
effects on HSV-1 in cell culture with IC50

values in range of 13.9–33.0 µg/mL.

Zandi et al.,
2010

Astaxanthin Pre-treatment of Vero cells with 75 µg mL−1

of Haematococcus pluvialis ethanol extract
with carotenoids inhibited Herpes simplex
virus type 1 (HSV-1) infection by
approximately 85%.

Santoyo
et al., 2012

β-carotene Pre-treatment of Vero cells with 75 µg mL-1
of H. pluvialis ethanol extract with carotenoids
inhibited Herpes simplex virus type 1 (HSV-1)
infection by approximately 85%.

Santoyo
et al., 2012

Capsaicin Methanolic extract of Capsicum annuum
exhibited a considerable anti-HSV-1 and
anti-HSV-2 activities at the concentration of
25 µg/mL.

Hafiz et al.,
2017

Gingerol Fresh Zingiber officinale inhibited human
respiratory syncytial virus (HRSV) with IC50 of
144.9 µg/mL in HEp-2 cells and 73.3 µg/ml
in A549 cells.

San Chang
et al., 2013

Vanillin MY21 (a vanillin derivative) had the IC50 of
50 µM against H1N1 neuraminidase (NA).

Hariono
et al., 2016

Eugenol IC50 values for the anti-HSV effects of
eugenol were 25.6 and 16.2 µg/mL for
HSV-1 and HSV-2, respectively.

Benencia
and
Courreges,
2000

Thymol Exhibited significant antiviral activity with an
IC50 of 7 µM against herpes simplex virus
type I.

Lai et al.,
2012

ligand with the same protocol and the grid parameters as
used for food bioactive compounds. The redocked ligand was
then superimposed onto the reference co-crystallized ligand

complex using Pymol, and the root mean square deviation
(RMSD) was analyzed.

Molecular dynamic simulations were performed using NAMD
(Phillips et al., 2005). The parameters, structure, and topology
files for the ligand were generated using the CHARMM-GUI
Web server (Jo et al., 2008). Visual molecular dynamics (VMD)
was used to generate protein structure (PSF) files (Humphrey
et al., 1996). Each protein-ligand docked complex was solvated
and ionized with 0.15 M ions (Na+ and Cl−) to neutralize the
charge and electrostatic screening. The systems were subjected
to 2000 steps of steepest descent energy minimization before
a production run at the NPT of 0.5 ns (250,000 steps). The
temperature (310 K) and pressure (1 atm) were controlled by the
Langevin and Langevin piston methods (Feller et al., 1995). VMD
software was used to visualize simulations and to analyze average
ligand-RMSD and protein-RMSD and hydrogen bonds.

In vitro Enzymatic Assays
For enzyme inhibition studies, selected phytochemicals, PCB,
Quercetin, Riboflavin, Cyanidin, Daidzein, and Genistein, were
purchased from Santa Cruz Biotechnology (Santa Cruz, CA,
United States). Enzyme assay kits, 3CL Protease, MBP-tagged
(SARS-CoV-2) assay (Catalog #79955), and papain-like protease
(SARS-CoV-2) assay kit: protease activity (Catalog #79995), were
purchased from BPS Bioscience (San Diego, CA, United States).

Mpro Assay
Fluorescence resonance energy transfer (FRET)-based cleavage
assay (Zhu et al., 2011) was used for in vitro enzyme
inhibition study. SARS-CoV-2 Mpro or 3CL Protease, GenBank
Accession No. YP_009725301, amino acids 1-306 (full length),
with an N-terminal MBP-tag, expressed in an Escherichia coli
and its fluorescent substrate with cleavage site (indicated by
↓) DABCYL-KTSAVLQ↓SGFRKME-EDANS, inhibitor control
(GC376), and the assay buffer composed of 20 mM Tris, 100 mM
NaCl, 1 mM EDTA, 1 mM DTT, pH 7.3 were used. Initially,
15 µL of the SARS-CoV-2 Mpro in reaction buffer at the final
concentration of 10 ng/µL and 5 µL of inhibitor control (GC376,
final concentration 50 µM)/test inhibitor (10–600 µM)/inhibitor
solvent (positive control) was pipetted into a 384-well plate.
Stock solutions of the compounds were prepared with 100%
DMSO. Afterward, the plate was preincubated for 30 min at room
temperature with slow shaking. The enzymatic reaction was then
initiated by adding of 5 µL of the substrate dissolved in the
reaction buffer to 25 µL final volume (final concentration 50 µM)
and incubated at room temperature for 4 h. The fluorescence
signal of the Edans generated due to the cleavage of the substrate
by the Mpro was monitored at excitation at 360 nm with an
emission wavelength of 460 nm, using a spectrophotometric
microplate reader (Synergy H1 Hybrid Multi-Mode Reader;
BioTek Instruments, Inc., Winooski, VT, United States).

PLpro Assay
Severe acute respiratory syndrome coronavirus-2 PLpro (papain-
like protease), GenBank Accession No. QHD43415, amino acids
1564–1882, with N-terminal His-tag, expressed in an E. coli and
its fluorescent substrate Z-Arg-Leu-Arg-Gly-Gly-AMC, inhibitor
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control (GRL0617) and the assay buffer (40 mM Tris pH 8,
110 mM NaCl, 1 mM DTT) was used for the inhibition assay.
Briefly, 30 µL of the SARS-CoV-2 PLpro in reaction buffer at
the final concentration of 0.44 ng/µL and 10 µL of inhibitor
control (GRL0617, final concentration 100 µM)/test inhibitor
(10–600 µM)/inhibitor solvent (positive control) was pipetted
into a 96-well plate. Afterward, the plate was preincubated for
30 min at room temperature with slow shaking. The enzymatic
reaction was then initiated by the addition of 10 µL of the
substrate dissolved in the reaction buffer to 50 µL final volume
(final concentration 25 µM), incubated at room temperature
for 40–60 min. The fluorescence signal of the substrate after
the enzymatic reaction was monitored at an excitation at
360 nm with an emission wavelength of 460 nm, using
a spectrophotometric microplate reader (Synergy H1 Hybrid
Multi-Mode Reader; BioTek Instruments, Inc., Winooski, VT,
United States). Triplicate experiments (N = 3) were performed
for both Mpro and PLpro assays, and the mean value was presented
with± standard deviation (SD).

RESULTS

Selection of Phytochemicals for the
Study
A total of 16 phytochemicals from different chemical classes were
selected based on the previous reports of their potent antiviral
effects (Table 1): linear tetrapyrrole – phycocyanobilin (PCB),
flavonols – quercetin, catechin, flavin – riboflavin, anthocyanin –
cyanidin, isoflavones – daidzein, genistein, stilbenoid
phenol – resveratrol, linear diarylheptanoid – curcumin,
Xanthophyll – astaxanthin, carotenes – β-carotene, phenolic
alkaloid – capsaicin, phenolic ketone – gingerol, phenolic

aldehyde – vanillin, allylbenzene – eugenol, monoterpenoid
phenol – thymol.

In silico Binding Interaction Studies of
Selected Phytochemical Compounds
With SARS-CoV-2 Mpro and PLpro

The 16 selected phytochemicals were docked into the active
site pocket of SARS-CoV-2 Mpro and PLpro. Table 2 depicts
the source, docking score, and polar contacts of selected
phytochemical bioactive compounds with binding site amino
acid residues of SARS-CoV-2 proteases. For Mpro, the results
show PCB docked with the best score or binding energy
of −8.6 Kcal/mol followed by Riboflavin (−7.9 Kcal/mol),
Cyanidin (−7.9 Kcal/mol), Daidzein (−7.8 Kcal/mol), and
Genistein (−7.6 Kcal/mol). Twelve key active-site amino acid
residues (Tyr 54, Gly 143, His 163, Asp 187, Gln 189, Glu
166, Cys 145, Leu 141, Ser 144, Thr 26, Gln 192, and Thr
190) of SARS-CoV-2 Mpro involved in polar interactions at
a distance of ≤3 Å with ligand phytochemical compounds.
Specific polar contacts of each phytochemical compound are
shown in Table 2. In the case of PLpro, as the reported peptide
inhibitor VIR250 is bound to the dimer interface in the crystal
structure of 6WUU (Rut et al., 2020), the docking studies
were performed with dimer form. Similarly, PCB docked with
the best score or binding energy of −9.8 Kcal/mol followed
by Astaxanthin, (−9.3 Kcal/mol), β-carotene (−9.2 Kcal/mol),
Daidzein (−8.9 Kcal/mol), Riboflavin (−8.5 Kcal/mol), and
Genistein (−8.3 Kcal/mol). Eleven key active site amino acid
residues (Asp 164, Tyr 264, Gln 269, Arg 166, Tyr 273, Glu 161,
Tyr 268, Lys 157, Leu 162, Gly 266, and Ser 170) in chain A
and 13 amino acid residues (Arg 166, Gln 174, Met 208, Glu
161, Glu 167, Cys 155, Lys 232, Met 206, Arg 183, Glu 203,
Tyr 268, Tyr 273, and Thr 301) in chain B of SARS-CoV-2

TABLE 2 | Molecular docking results of food bioactive compounds with COVID-19 main protease (Mpro), papain-like protease (PLpro).

Source Compounds Mpro PLpro

Dock score Polar contacts Dock score Polar contacts

Cyanobacteria Phycocyanobilin −8.6 Y54, G143, H163, D187, Q189 −9.8 D164 (A), R166 (B), Y264 (A)

Fruits, vegetables, seeds, and grains Quercetin −7.8 Y54, Q189 −8 R166 (B), Q269 (A)

Eggs, meat, fruits, and vegetables Riboflavin −7.9 E166, C145, H163, L141, S144 −8.5 R166 (A), Y264 (A), Y273 (A)

Grapes and berries Cyanidin −7.8 S144, H163 −7.9 E161 (A), Y268 (A)

Legumes Daidzein −7.8 T26, E166, Q192, T190 −8.9 K157 (A), D164 (A), R166 (B), Q174 (B)

Legumes Genistein −7.6 E166 −8.3 K157 (A), L162 (A), Q174 (B), M208 (B)

Green tea Catechin −7.3 L141, H163 −7.1 E161 (B), R166(A)

Grapes and berries skin Resveratrol −7 L141, H163, D187 −7.2 R166 (A), E167 (B), C155 (B)

Turmeric Curcumin −7 G143, S144, C145 −8 K157 (A), K232 (B), Y264 (A)

Microalgae Astaxanthin −7 None −9.3 G266 (A), M206 (B)

Fruits and vegetables β-carotene −6.5 None −9.2 None

Chili pepper Capsaicin −6.3 E166, T190, Q192 −6.5 K157 (A), M208 (B)

Ginger Gingerol −6.1 G143, S144, C145, H163, E166 −6.4 R183 (B), E203 (B), R183 (B)

Vanilla Vanillin −5 G143, S144, C145, H163, E166 −5.4 Y268 (B), Y273 (B), T301 (B)

Cloves Eugenol −4.9 L141, G143, S144, C145, H163 −5.6 S170 (A), C155 (B)

Thyme Thymol −4.8 None −5.4 E203 (B)
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FIGURE 1 | (A) 3-D binding pocket of SARS-CoV-2 Mpro with top model PCB (cyan color), surrounding active site amino acid residues (yellow color) within 3 Å;
remaining residues are represented as a cartoon; (B) 3-D binding pocket of SARS-CoV-2 PLpro with top model PCB (cyan color), surrounding active site amino acid
residues (chain A, yellow color; chain B, orange color) within 3 Å; remaining residues are represented as a cartoon (chain A, green color; chain B, light pink color).
Polar interactions are represented as magenta color.

PLpro are involved in polar interactions at a distance of ≤3 Å
with ligand phytochemical compounds. Table 2 illustrates the
specific polar contacts between phytochemical compounds and
proteases. Figure 1 shows a 3-D representation of the binding
pocket of Mpro and PLpro with top score model pose of PCB. The
co-crystalized structure of native 6LU7-N3 and 6WUU-VIR250
complexes and polar contacts are represented in Supplementary
Figures 1a, 2a. The docking validation studies reveal that both
N3 peptide inhibitor and VIR250 bound exactly to the active
site of 6LU7 and 6WUU, respectively. Superimposed redocked
N3 on to the native co-crystallized N3 show a low RMSD of
1.82 Å was observed, whereas redocked VIR250 had a RMSD of
2.096 Å (Supplementary Figures 1b, 2b). These results show less
variation in comparison with the native binding pose of ligands
in co-crystallized form.

To evaluate the reliability of the molecular docking and
stability of docked complexes, we conducted molecular dynamics
simulations with a traditional force field (CHARMM36m),
starting with the docking-generated pose of Mpro-ligand
complexes with binding energy cutoff values of −7.6 Kcal/mol,
PLpro-ligand complexes with binding energy cut-off values of
−8.0 Kcal/mol accompanying with a higher binding affinity
toward Mpro. Root mean square deviation (RMSD) was measured
to measure the structural conformation differences between the
initial and final positions of proteins and ligands. Table 3 depicts
average ligand and protein RMSD and occupancy of major
hydrogen bonds for food bioactive compounds in traditional MD
simulations. The data show ligand RMSD values are in the range
of 0.285± 0.090 to 1.743± 0.219, protein RMSD values are in the
range of 1.370 ± 0.164 to 2.298 ± 0.353 in both Mpro and PLpro

complexes. These lower RMSD values indicate greater stability of
protein-ligand docked complexes.

In vitro Enzymatic Assay Studies to
Screen Potent Phytochemical Inhibitor
Compounds Against SARS-CoV-2 Mpro

and PLpro

To further validate the molecular docking and molecular
dynamics studies, in vitro enzymatic studies were conducted.
A positive control without the inhibitor compound in the
reaction mixture, an inhibitor control that contains authentic
inhibitors GC376 (for Mpro), GRL0617 (for PLpro) were used
in this study. The enzyme’s relative activity in the presence
of inhibitors was estimated by considering positive control
activity as 100%. Based on in silico studies, we selected the
top six phytochemicals (PCB, quercetin, riboflavin, cyanidin,
daidzein, and genistein) with a binding energy cutoff value of
−7.6 Kcal/mol for Mpro enzymatic assay studies. Initial screening
results revealed that PCB had higher inhibitor activity followed
by quercetin, genistein, cyanidin, and riboflavin (p < 0.05)
(Figure 2). Further, the IC50 value of top two compounds,
PCB and quercetin, was determined, and the results show an
effective IC50 value of 71 µM for PCB (Figure 3) than quercetin
(145 µM) (Supplementary Figure 3). For PLpro, four compounds
(Phycocyanobilin, Riboflavin, Genistein, and Quercetin) with a
binding energy cutoff value of −8.0 Kcal/mol, accompanying
higher inhibitor activity toward Mpro, were selected for the
in vitro inhibitor activity assay (Figure 2). It was envisaged
that PCB showed potent inhibitor activity compared to other
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TABLE 3 | Average ligand and protein RMSD and occupancy of major hydrogen
bonds for food bioactive compounds in traditional MD simulations.

Compound Ligand-
RMSD

(Å)

Protein-
RMSD

(Å)

Major hydrogen bonds and
its occupancy (%)

Mpro

PCB 1.743± 0.219 1.720± 0.201 G143 (38.5), N119 (38.7), S46
(25.6), Y54 (12)

Quercetin 0.342± 0.104 1.372± 0.143 Y54 (18.7), E166 (10.9), S144
(4.5)

Cyanidin 0.832± 0.252 1.462± 0.207 H163 (34.6), H164 (13.5), G143
(6.7), N (5.9)

Daidzein 0.513± 0.145 1.407± 0.148 E166 (51.5), R188 (23.9), T190
(25.7), T26 (24.2), G143 (17.4)

Genistein 0.391± 0.088 1.370± 0.164 D187 (32), E166 (26.8), G143
(9.2), Q189 (4.2)

Riboflavin 1.131± 0.193 1.482± 0.297 H163 (33.9), N142 (24.7), E166
(15.9), R188 (10.2)

PLpro

PCB 1.452± 0.125 2.226± 0.125 D164(C) (82.1), R166(C) (57.4),
D164(A) (51.9), G271(A) (21.6)

Quercetin 0.875± 0.118 2.298± 0.353 E203(C) (54.5), E167(A) (27.6),
S170(C) (22.7), M208(C) (21.4),
Y171(A) (8.1), K157(A) (5.5),

Cyanidin 0.285± 0.090 1.988± 0.316 E203(C) (73.7), Y264(A) (15.1)

Daidzein 0.794± 0.088 2.02 ± 0.486 D164(A) (46.6), C155(A) (30.2),
K157(A) (19.2), R166(A) (18.1)

Genistein 1.072± 0.196 1.864± 0.254 Q269(A) (51.9), M208(C) (21),
Y171(A) (16.8), K157(A) (11.3)

Values in parentheses denotes hydrogen bonds occupancy (%).

compounds (Figure 2), with an IC50 value of 62 µM (Figure 3).
Overall, in silico docking and in vitro enzyme inhibitor activity
data show PCB as a potent inhibitor against SARS-CoV-2 Mpro

and PLpro.

In silico Insights of Broad-Spectrum
Inhibitor Activity of PCB Against Mpro

and PLpro

The broad-spectrum efficacy of PCB against CoVs was evaluated
by molecular docking studies with available crystal PDB structure
of various human and animal CoVs. Table 4 shows the PDB
identification code and top docking scores of PCB with Mpro

and PLpro enzymes of human and animal CoVs. Due to
the limitation on the availability of crystal PDB structures of
PLpro, both dimer and monomeric forms were used in docking
studies. For Mpro, docking scores are in the range of −8.3
to −9.3 Kcal/mol. PCB showed higher binding affinity with
docking score (−9.3 Kcal/mol) for MERS Mpro followed by
HCoV NL63 (−9.0 Kcal/mol) and IBV (−8.9 Kcal/mol). For
PLpro, docking scores were in the range of−8.9 to−7.6 Kcal/mol.
The results reveal that PCB had a higher binding affinity to the
dimer form of PLpro enzymes than monomeric forms. When
compared monomers only, PCB had best docking score for
MERS-CoV (−8.5 Kcal/mol) followed by TGEV (−8.1 Kcal/mol)
and SARS-CoV-2 (−8.0 Kcal/mol). Supplementary Figures 4, 5
show polar contacts of PCB with binding pocket key amino
acid residues of Mpro and PLpro enzymes of human and

animal CoVs. Surprisingly, the docking results suggest PCB as
a promising broad-spectrum food bioactive inhibitor compound
against CoVs proteases.

In silico Insights Into Inhibitor Activities
of Other Phycobilins
Phycobilins are linear tetrapyrrole chromophore compounds
found in certain photosynthetic organisms (cyanobacteria, red
algae, glaucophytes, and some cryptomonads) and covalently
linked to phycobiliproteins (Beale, 1993). Four types of
phycobilins are identified: (i) phycoerythrobilin (PEB), (ii)
phycourobilin (PUB), (iii) phycoviolobilin (PVB), and (iv) PCB.
Figure 4 represents the molecular structures of phycobilins.
Based on the PCB results, the other phycobilin inhibitor activity
against SARS-CoV-2 proteases via molecular docking approach
was demonstrated and docking scores, polar contacts are given in
Table 5. All phycobilins show strong binding affinity to key amino
acids of Mpro and PLpro binding pockets. The docking scores
were in the order of PUB (−8.7 Kcal/mol) >PCB (−8.6 Kcal/mol)
>PEB (−8.2 Kcal/mol) >PVB (−8.2 Kcal/mol) for Mpro, whereas
in the case of PLpro, the order was PCB (−9.8 Kcal/mol) = PEB
(−9.8 Kcal/mol) >PUB (−9.6 Kcal/mol) >PVB (−9.5 Kcal/mol).
Nine key binding pocket amino acids (Y54, L141, G143, S144,
C145, H163, E166, D187, and Q189) of Mpro participated in
polar contacts with phycobilins, and specific polar contacts of
each phycobilin are shown in Supplementary Figure 6. Ten key
binding pocket amino acids [D164 (A), Y264 (A), R166 (A), G266
(A), E161 (A), L162 (A), G271 (A), K232 (A), R166 (B), and T301
(B)] of PLpro participated in polar contacts with phycobilins;
specific polar contacts are shown in Supplementary Figure 6.

DISCUSSION

Several SARS-CoV-2 mutants are spreading globally; most
notably, mutants emerged in the United Kingdom (B.1.1.7),
South Africa (B.1.351), and Brazil (P.1) (CDC, 2021). Hence, the
efficacy of currently developed vaccines against these variants
is questionable. The development of broad-spectrum antiviral
drugs against existing viruses is an attractive approach that could
provide first-line defense against emerging viral variants. The
selection of highly conserved drug targets is an important step
to develop broad-spectrum antiviral drugs. Sequence alignment
analysis of SARS-CoV-2 and other CoVs (SARS-CoV and MERS)
reveals that Mpro and PLpro are highly conserved, especially in
the functional regions, which makes them potential targets for
COVID-19 drug targets (Wu C. et al., 2020).

Several target-based in silico screening approaches were
performed to find promising protease inhibitors among
repurposed drugs, natural phytochemicals, and herbal medicinal
compounds against COVID-19 (Amin et al., 2020; Wu C.
et al., 2020; Xian et al., 2020). In this study, we focused on
screening natural bioactive compounds for potential inhibitor
activity against SARS-CoV-2 proteases. Amin et al. (2020)
report the list of key amino acids involved in catalysis and
substrate binding for Mpro (H41, C145, M49, G143, S144,
H163, H164, M165, E166, L167, D187, R188, Q189, T190,
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FIGURE 2 | Initial screening of phytochemicals (selected based on docking score and our availability) by in vitro enzymatic assays; (A) Mpro assay; (B) PLpro assay;
P control, positive control; I control, inhibitor control; PC, phycocyanobilin; QC, quercetin; GS, genistein; CD, cyaniding; RF, riboflavin.

FIGURE 3 | (A) Dose response curve of Phycocyanobilin versus Mpro activity; (B) Dose response curve of Phycocyanobilin versus PLpro activity.

A191, and Q192) and PLpro (C111, H272, D286, Y268,
M208, P247, P248, T301, P248, Y264, N267, Q269, L162,
C270, G271, and Y273). Our molecular docking results
with natural compounds also show polar interactions in
these specific substrate-binding regions for both proteases.
Further in vitro validation studies found a good correlation
between docking and enzymatic assay results. Both in silico
and in vitro approaches show that PCB has strong inhibitor
activity against both SARS-CoV-2 proteases. Shih et al. (2003)
report direct antiviral activity of allophycocyanin against
enterovirus 71 in human rhabdomyosarcoma cells and African
green monkey kidney cells. In another study, El-Morsi et al.
(2016) demonstrate the reduction of 8X174 and MS2 by

extracted phycobiliproteins from cyanobacterium Synechococcus
cedrorum Sauvageau.

Though numerous research studies report potential inhibitors
with major emphasis on SARS-CoV-2, limited literature is
available on broad-spectrum inhibitors against a wide range
of CoVs, including human and animal CoVs. For instance,
Sheahan et al. (2020) report broad-spectrum antiviral activity
of ribonucleoside analog β-D-N4-hydroxycytidine (NHC; EIDD-
1931) against SARS-CoV-2, SARS-CoV, MERS-CoV, and bat-
CoVs. This study reports the broad-spectrum activity of natural
phytochemical compound PCB against 11 CoVs (seven human
CoVs and four animal CoVs). The computed physical properties
of phycocyanobilin show a rotatable bond count of 10, hydrogen
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TABLE 4 | Molecular docking results of phycocyanobilin with proteases of other
pathogenic human and animal CoVs.

CoVs PDB ID Dock
score

Polar contacts

Mpro

SARS-CoV-1 1WOF −8.5 Y54, N142, G143, S144, T190

MERS-CoV 5C3N −9.3 H41 (2), Q167, K191 (2), Q195 (2)

MHV 6JIJ −8.4 F138, H161, E164, Q187, Q190

TGEV 2AMP −8.3 V26, H41, H162

FIPV 5EU8 −8.5 H41, T47, H162, H163, G167,
Q191

IBV 2Q6F −8.9 F46, G141, A142, C143, E187,
Q190

HCoV 229 E 3DBP −8.3 I140, H162, E165, G167

HCoV NL63 5DWY −9 Y53, G142 (2), A143, H163, Q164

HCoV HKU1 3D23 −8.4 E166 (2), S168

PLpro

SARS-CoV-1 (dimer) 2FE8 −8.9 K158 (A), D165 (A), E168 (A), H172
(B)

SARS-CoV-1 (monomer) 2FE8 −7.6 L163, G164, Y269, T302

SARS-CoV-2 (monomer) 6LU7 −8.0 R166, G266

MERS-CoV (monomer) 4RNA −8.5 D164, D165, G248, G277, Y279

TGEV (monomer) 3MP2 −8.1 D80, H153, Q180, G182, Y184

IBV (monomer) 4 × 2Z −7.8 D150, F151 (2), S152, D153

bond donor count of five, and hydrogen bond acceptor count of
seven (National Center for Biotechnology Information (NCBI),
2020), which makes multiple hydrogen bond interactions

TABLE 5 | Molecular docking results of other phycobilins with
proteases of SARS-CoV-2.

Other phycobilins Dock score Polar contacts

Mpro

Phycoerythrobilin −8.2 L141, H163, E166, Q189 (2)

Phycourobilin −8.7 G143, S144, C145, H163

Phycoviolobilin −7.7 L141, G143, S144, C145, E166

PLpro

Phycoerythrobilin −9.8 R166 (A), Y264 (A), T301 (B)

Phycourobilin −9.6 R166 (A) (2), G266 (A)

Phycoviolobilin −9.5 E161 (A), L162 (A), G271 (A), R166 (B)
(2), K232 (A)

between the compound and specific amino acid residues located
at the active site of the pocket of the wide range of protease
enzymes. Molecular docking studies indicated that propionic
carboxyl and lactam ring carbonyl oxygens of PCB are involved
in polar interactions with proteases’ amino acid residues.

To investigate other structurally similar phycobilin (PEB,
PUB, and PVB) inhibitor activity, we attempted molecular
docking with SARS-CoV-2 proteases. The results reveal that,
like PCB, all phycobilins show similar binding affinity toward
Mpro and PLpro of SARS-CoV-2. Besides this, potent therapeutic
properties, such as peroxy radical scavenging, inhibition of
cancer cell proliferation, and platelet aggregation are reported
for phycobilins (Watanabe et al., 2014). Phycobilin compounds
can be directly administered orally as phycobiliproteins

FIGURE 4 | Molecular structures of phycobilins; (A) PCB; (B) PEB; (C) PUB; (D) PVB.
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(a complex of phycobilins and protein). For instance, when
phycocyanin is administered orally to humans, it can be
digested and free phycocyanobilin released in the gastrointestinal
tract (Watanabe et al., 2014). Thus, noticed therapeutic
properties of phycobiliproteins might reflect the effects of their
phycobilins (chromophores).

In conclusion, by using in silico (molecular docking and MD
simulations), in vitro enzymatic assay screenings, we discovered
PCB as potent phytochemical inhibitors to Mpro and PLpro

proteases of SARS-CoV-2. Phycocyanobilin had IC50 values of
71 and 62 µM for SARS-CoV-2 Mpro and PLpro, respectively.
Further PCB docking studies with other CoVs Mpro and PLpro
proteases revealed its broad-spectrum inhibitor activity. A similar
binding affinity of other phycobilins (PEB, PUB, and PVB)
to these proteases were observed. However, in vitro enzymatic
studies with Mpro and PLpro of other CoVs and in vivo studies on
the inhibition of CoVs infectivity using human cells and animal
models are needed. Further structure-guided development of
phycobilin lead compounds could rapidly lead to discovering a
single agent with clinical potential against existing and possible
future emerging CoV-associated diseases.
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