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ABSTRACT

We report the detection of five Jovian-mass planets orbiting high-metallicity stars. Four of these stars were first
observed as part of the N2K program, and exhibited low rms velocity scatter after three consecutive observations.
However, follow-up observations over the last 3 years now reveal the presence of longer period planets with orbital
periods ranging from 21 days to a few years. HD 11506 is a G0V star with a planet of M sin i ¼ 4:74 MJup in a 3.85 yr
orbit. HD 17156 is a G0 V star with a 3.12MJup planet in a 21.2 day orbit. The eccentricity of this orbit is 0.67, one of
the highest known for a planet with a relatively short period. The orbital period for this planet places it in a region of
parameter space where relatively few planets have been detected. HD 125612 is a G3 V star with a planet ofM sin i ¼
3:5 MJup in a 1.4 yr orbit. HD 170469 is a G5 IV star with a planet of M sin i ¼ 0:67 MJup in a 3.13 year orbit.
HD 231701 is an F8 V star with planet of 1.08MJup in a 142 day orbit. All of these stars have supersolar metallicity.
Three of the five stars were observed photometrically, but showed no evidence of brightness variability. A transit
search conducted for HD 17156 was negative, but covered only 25% of the search space, and so is not conclusive.

Subject headinggs: planetary systems — stars: individual (HD 11506, HD 17156, HD 125612,
HD 170469, HD 231701)

1. INTRODUCTION

Ongoing Doppler surveys of stars closer than 150 pc have de-
tected more than 200 exoplanets (Butler et al. 2006;Wright et al.
2007). This ensemble of exoplanets exhibits a diverse range of
statistical characteristics (Marcy et al. 2005). Notably, the mass
distribution of exoplanets falls exponentially toward masses
greater than 1 Jupiter mass. In addition, there is a statistical pile-up
of planets in orbits of just a few days, a paucity of planets with
periods between 10 and 100 days, and a rising number of gas gi-
ant planets found at separations greater than 1AU.Orbital eccen-
tricities span a surprising range from 0Y0.93, although 92% of
planet eccentricities are less than 0.6, and even for planets with
periods longer than 5 days (i.e., not tidally circularized), the me-
dian exoplanet eccentricity is 0.26.

It has also been shown that planet formation is tied to the chem-
ical composition of the host star. There is a few percent probability
of finding a gas giant planet around a solar metallicity star, while

planet occurrence rises dramatically to�25% for stars with three
times the heavymetal composition of the Sun (Santos et al. 2005;
Fischer & Valenti 2005). Ida & Lin (2004) have accounted for
this metallicity correlation within the context of core accretion.
The statistical characteristics of exoplanets serve as tracers of

planet formation and migration histories. The planet-metallicity
correlation indicates initial high metallicity in the protoplanetary
disk, which in turn may be correlated with a higher surface den-
sity of solid particles in the midplane of the disk that enhances
core accretion. Orbital eccentricities and the proximity of gas gi-
ant planets to their host stars are remnant signatures of gravita-
tional interactions that drive orbital migration. The architecture
of multiplanet systems, sometimes locked in resonances, adds
to our understanding of the evolution of the protoplanetary disk.
The N2K program (Fischer et al. 2005) is a survey of metal-

rich stars, designed to identify short-period planets. These plan-
ets are geometrically endowed with a higher transit probability;
transit events provide a rare opportunity to derive information about
the planet’s density, internal structure, and atmosphere (Burrows
et al. 2007; Charbonneau et al. 2006; Sato et al. 2005). Because
short-period planets can be flagged with just a few observations,
the N2K program only requires three Doppler measurements to
screen each star. However, an increased occurrence of planets is
correlated with high host star metallicity at all detected separa-
tions. Therefore, additional observations were obtained for the
highest metallicity stars to check for longer period planets. This
extended program has detected six new intermediate-period plan-
ets: HD 5319 and HD 75898 (Robinson et al. 2007), and four of
the five planets presented here: HD 11506, HD 17156, HD 125612,
and HD 231701.

2. HD 11506

2.1. Stellar Characteristics

HD 11506 is classified as a G0 star with V ¼ 7:51. The
Hipparcos catalog (ESA 1997) lists B� V ¼ 0:607 with a par-
allax of 18.58mas, corresponding to a distance of 53.8 pc. The dis-
tance and apparent magnitude set the absolute visual magnitude

1 Based on observations obtained at the W. M. Keck Observatory, which is
operated by the University of California and the California Institute of Technol-
ogy. Keck time has been granted by NOAO and NASA.

2 Based on observations obtained at the Subaru Telescope, which is operated
by the National Astronomical Observatory of Japan.

3 Department of Physics andAstronomy, San Francisco State University, San
Francisco, CA 94132; fischer@stars.sfsu.edu.

4 UCO/Lick Observatory, University of California, Santa Cruz, CA 95064.
5 Department of Astronomy, University of California, Berkeley, CA 94720.
6 Department of Terrestrial Magnetism, Carnegie Institute of Washington DC,

5241 Broad Branch Road NW, Washington DC 20015-1305.
7 Tokyo Institute of Technology, 2-12-1 Okayama, Meguro-ku, Tokyo 152-

8550, Japan.
8 Center of Excellence in Information Systems, Tennessee State University,

3500 John A. Merritt Boulevard, Box 9501, Nashville, TN 37209.
9 Department of Earth and Planetary Sciences, Graduate School of Science,

Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
10 Department of Physics, Tokai University, 1117 Kitakaname, Hiratsuka,

Kanagawa 259-1292, Japan.
11 Department of Earth and Planetary Sciences, Johns Hopkins University,

Baltimore, MD 21218.
12 Department of Physics and Astronomy, Northwestern University, 2145

Sheridan Road, Evanston, IL 60208.
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as MV ¼ 3:85 and the stellar bolometric luminosity as 2.29 L�,
including a bolometric correction of�0.033 (VandenBerg &Clem
2003), based on effective temperature, surface gravity, and met-
allicity of the star. A high-resolution spectroscopic analysis de-
scribed in Valenti & Fischer (2005) yields TeA ¼ 6058� 51 K,
log g ¼ 4:32� 0:08, v sin i ¼ 5:0� 0:5 km s�1, and ½Fe/H� ¼
0:31� 0:03 dex. HD 11506 is about 0.65 mag above the main
sequence. We expect the star to be located about 0.3 mag above
the main sequence because of high stellar metallicity, so this star
appears to be slightly evolved by a few tenths of a magnitude, and
is likely just beginning to transition onto the subgiant branch.

The stellar radius is calculated to be 1.3R� usingL ¼ 4�R2�T 4.
We have also run a fine grid of evolutionary tracks (described in
Takeda et al. 2007), tuned to the uniform spectroscopic analysis
of Valenti & Fischer (2005), and based on the Yale Stellar Evo-
lution Code. This analysis provides posterior probability distri-
butions for stellar mass, radius, gravity, and ages. Based on these
evolutionary tracks, we derive a stellar mass of 1.19M�, a radius
of 1.38 R�, and an age of 5.4 Gyr. As a measure of the formal un-
certainties, the lower and upper 95% credibility intervals from a
Bayesian posterior probability distribution are provided in pa-
rentheses in Table 1 for these values.

The Ca iiH&K lines (Fig. 1) show that HD 11506 is chromo-
spherically inactive. We measure SHK, the core emission in the
Ca ii H & K lines relative to the continuum, for all of our stars.
Based on 19 Keck observations, we measure an average SHK ¼
0:156 for HD 11506. The ratio of flux from SHK to the bolomet-
ric stellar flux is designated as log R0

HK, and gives the best diag-
nostic of chromospheric activity. The average log R0

HK ¼ �4:99
for this star; we derive an activity-based rotational period (Noyes
et al. 1984)Prot ¼ 12:6 days, and an activity-based age of 5.4Gyr,
in excellent agreement with the age from evolutionary tracks. The
activity, spectral type, and evolutionary stage of the star allow us
to estimate an additional source of astrophysical noise, or stellar
jitter, for the velocities of each of the stars on our Doppler survey
(Wright 2005).

Wemonitored the brightness of HD 11506 with the T10 0.8 m
automatic photometric telescope (APT) at Fairborn Observatory
(Henry 1999; Eaton et al. 2003). TheT10APTmeasures the bright-
ness of program stars relative to nearby constant comparison stars
with a typical precision of 0.0015Y0.0020 mag for a single mea-

surement. For HD 11506, we obtained 102 b and ymeasurements
spanning 451 days between 2004October and 2006 January. The
standard deviation of a single observation from the mean was
0.0023 mag, our upper limit to possible photometric variability
in HD 11506. A periodogram analysis found no significant pe-
riodicity between 1 and 225 days, so our photometry confirms the
star’s low chromospheric activity. The stellar parameters are sum-
marized in Table 1.

2.2. Doppler Observations and Keplerian Fit

Doppler observations were made at the Keck telescope using
HIRES (Vogt et al. 1994) with an iodine cell to model the instru-
mental profile and to provide the wavelength scale (Butler et al.
1996). An exposure meter maintains a constant signal-to-noise
ratio (S/N) of about 200 in our spectra, yielding a mean radial
velocity precision of 2.75 m s�1 for HD 11506. We obtained a
total of 26 Doppler measurements. The observation dates, radial
velocities, and measurement uncertainties for the radial veloci-
ties are listed in Table 2 and plotted in Figure 2.

In addition to velocity errors arising from our measurement
uncertainties (including photon shot noise), the star itself can have
pulsations, cool spots, or granular convective flows that contrib-
ute nondynamical velocity noise. These astrophysical sources of
noise are termed jitter, and we empirically estimate stellar jitter
based on the spectral type and chromospheric activity of the star,
followingWright (2005). For purposes of fitting aKeplerianmodel,
the stellar jitter is added in quadrature to the formal instrumental
errors; however, the estimated jitter is never included in the mea-
surement uncertainties for the tabulated radial velocity sets.

The periodogram of the radial velocities shows a strong, broad
peak in the power spectrum at about 1270 days, with an associ-
ated false-alarm probability (FAP) < 0:0001. The FAP associated
with the periodogram tests whether scrambled velocities yield
power that exceeds the observed, unscrambled velocities. A high
FAP suggests that the signal is not significant, or could have been
caused by a window function in the data. Using a Monte Carlo
simulation, 1000 data sets of noise were generated by randomly
drawing (with replacement) sets of actual stellar velocities. The
fraction of trials with maximum periodogram power that exceeds
the observed value from the initial unscrambled data set defines
the FAP (Cumming 2004).

For eachof the radial velocity data sets in this paper, a Levenberg-
Marquardt fitting algorithm was used to model the radial veloc-
ities with a theoretical Keplerian orbital curve. There are six
orbital parameters derived in the fit: orbital period (P), time of
periastron passage (TP), eccentricity (e), the orientation of the
orbit (or line of apsides) (!), the semivelocity amplitude (K ) and
the residual center-of-mass radial velocity (after subtracting a
median radial velocity).

Uncertainties in the orbital parameters are determined with a
bootstrap Monte Carlo analysis. First, a best-fit Keplerian model
is obtained. Then, for each of 100 trials, the theoretical best fit is
subtracted from the observed radial velocities. The residual ve-
locities are then scrambled (with replacement) and added back
to the theoretical best-fit velocities, and a new trial Keplerian fit is
then obtained. The standard deviation of each orbital parameter for
the 100 Monte Carlo trials is adopted as the parameter uncertainty.

The best-fit Keplerianmodel gives an orbital period of 1405�
45 days, a semivelocity amplitude of 80� 3m s�1, and an orbital
eccentricity of 0:3� 0:1. The rms to this fit is 10.8 m s�1. Based
on the chromospheric activity of this star, we estimated a jitter of
2 m s�1 (Wright 2005). When this jitter is added in quadrature
with the error bars listed in Table 2, (�2

� )
1=2 ¼ 3:2. While the

large-amplitude Doppler variation is clear, the (�2
� )

1=2 fit is worse

TABLE 1

Stellar Parameters

Parameter HD 11506 HD 17156 HD 125612

V ........................... 7.51 8.17 8.31

MV ........................ 3.85 3.70 4.69

B� V ................... 0.607 0.590 0.628

Spectral type ........ G0 V G0 V G3 V

Distance (pc) ....... 53.82 78.24 52.82

Lbol /L�.................. 2.29 2.6 1.08

½Fe/H � .................. 0.31 (0.03) 0.24 (0.03) 0.24 (0.03)

TeA (K)................. 6058 (51) 6079 (56) 5897 (40)

v sin i (km s�1) ..... 5.0 (0.50) 2.6 (0.50) 2.1 (0.50)

log g...................... 4.32 (0.08) 4.29 (0.06) 4.45 (0.05)

Mstar (M�)
a ........... (1.1) 1.19 (1.29) (1.1) 1.2 (1.3) (1.04) 1.1 (1.17)

Rstar (R�)
a ............. (1.25) 1.38 (1.53) (1.3) 1.47 (1.6) (0.99) 1.05 (1.13)

Age (Gyr)a ........... (3.9) 5.4 (7.0) (3.8) 5.7 (7.0) (0.16) 2.1 (5.6)

SHK ....................... 0.156 0.15 0.178

log R0
HK ................. �4.99 �5.04 �4.85

Prot (days)............. 12.6 12.8 10.5

�phot (mag) ........... 0.0023 0.0024 . . .

a Stellar masses, radii, and ages are derived from evolutionary tracks.
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than usual, suggesting that our velocity errors may be under-
estimated, or that additional low-amplitude dynamical velocities
are present. A periodogram of the residual velocities to the single
Keplerian fit shows several peaks with similar power. For example,
we can fit a second planet with a period of 170 days with a signifi-
cant reduction in the residual velocity rms and an improvement
in (�2

� )
1=2. However, this is not yet a unique double-planet fit; addi-

tional data are required to better evaluate the possible second signal.
Using the stellar mass of 1.19 M� derived from evolution-

ary tracks, we findM sin i ¼ 4:74 MJup and a semimajor axis of
2.48 AU. At the distance of this star, this physical separation cor-
responds to an angular separation of � ¼ 0:0400. The Keplerian
orbital solution is listed in Table 3, and the best-fit Keplerian
model is plotted in Figure 2.

3. HD 17156

3.1. Stellar Characteristics

HD 17156 is a listed as a G5 star in the SIMBAD database
and the Hipparcos catalog. However, this spectral type seems at
odds with other data for the star. The visual magnitude is V ¼
8:17, B� V ¼ 0:59, and the Hipparcos parallax (ESA 1997)
is 12.78 mas, corresponding to a distance of 78.24 pc. The
bolometric correction �0.039 (VandenBerg & Clem 2003) and
absolute visual magnitudeMV ¼ 3:70 imply a bolometric stel-
lar luminosity of 2.6 L�. Spectroscopic analysis yields TeA ¼
6079� 56 K, log g ¼ 4:29� 0:06, v sin i ¼ 2:6� 0:5 km s�1 ,
and ½Fe/H� ¼ 0:24� 0:03. The B� V color and the effective

temperature are independent measurements that are consistent
with each other. Together with the absolute magnitude and po-
sition on the H-R diagram, the spectral type for this star is more
likely to be G0, with the star just beginning to evolve off the main
sequence.
The stellar mass, from evolutionary models described by Takeda

et al. (2007), is 1.2 M�, and the age is 5.7 Gyr. The stellar radius
from evolutionary models is 1.47 R�, and agrees with the value we
derive using the observed luminosity and the Stefan-Boltzmann
relation.
The absence of Ca ii H and K emission (Fig. 1) demonstrates

low chromospheric activity. Taking the average of 25 observa-
tions, we measure SHK ¼ 0:15 and log R0

HK ¼ �5:04, and derive
a rotational period Prot ¼ 12:8 days, with an estimated stellar age
of 6:4� 2 Gyr, which compares favorably with the age derived
above from stellar evolution tracks.
We obtained 241 photometricmeasurementswith the T12APT,

spanning 179 days between 2006 September and 2007 March.
The standard deviation of the observations from their mean was
0.0024 mag, the upper limit to photometric variability in the star.
Periodogram analysis revealed no significant periodicity between
1 and 100 days. In particular, a least-squares sine fit of the obser-
vations on the 21.22 day radial velocity period resulted in a pho-
tometric amplitude of only 0:00039� 0:00023 mag, providing
further evidence that the radial velocity variations in HD 17156
are not due to chromospheric activity. The stellar characteristics,
including our assessment of photometric variability, are summa-
rized in Table 1.

Fig. 1.—Left: Ca H line for HD 11506 and HD 17156, with the same wavelength segment of the Sun shown for comparison. Right: HD 125612, HD 170469, and
HD 231701. All of these stars have low chromospheric activity based on our measurement of line core emission relative to the continuum.

FISCHER ET AL.1338 Vol. 669



3.2. Doppler Observations and Keplerian Fit

We initially obtained eight Doppler observations of HD17156
using the High Dispersion Spectrometer (Noguchi et al. 2002) at
the Subaru Telescope in 2004 and 2005. For the first observing
runs, the iodine absorption cell was located behind the entrance
slit of the spectrometer (Kambe et al. 2002; Sato et al. 2002,
2005). The box holding the I2 cell included a windowwith a lens
to maintain constant focal length inside the spectrometer. This
eliminated the need to adjust the collimator position when mov-
ing the I2 cell in and out of the light path (i.e., when taking pro-
gram and template observations). However, the lens introduced a
different wavelength dispersion for program observations rela-

tive to the template observation. Modeling of those early data is
still ongoing; however, standard stars, known to have constant
radial velocities, show rms scatter greater than 15 m s�1, with
larger run-to-run velocity offsets for Doppler observations ob-
tained with that setup.

The Subaru N2K program was awarded 10 nights of intensive
time in summer 2006 and 2006 December. Before the intensive
time allocation, the iodine cell was moved in front of the slit,
eliminating the change in wavelength dispersion between tem-
plate and program observations. With this new setup, the rms
scatter decreased, ranging from 4Y12 m s�1 in a set of four RV
standard stars.

HD 17156 had exhibited large radial velocity variations in
2004Y2005 at Subaru. Follow-up observations at Keck confirmed
velocity variations, so the star was observed on nine consecu-
tive nights at Subaru from 2006December 8 to 16. Setup StdI2b
was used to cover the wavelength region of 3500Y6100 8 with
a mosaic of two CCDs. The slit width of 0.600 was used to give
a reciprocal resolution (k /�k) of 60,000. We obtained a typical
S/N of �150 pixel�1 at 5500 8 with exposure times of about
120 s. Because of the larger systematic errors for observations
taken before summer 2006 (when the iodine cell was behind the
slit), only the nine radial velocities from 2006 December are
listed in Table 4. To account for the intrinsic rms velocity scatter
in standard stars, 5 m s�1 was added in quadrature to the nine
Subaru observations in Table 4.

After HD 17156 was flagged as an N2K candidate at Subaru,
it was added to the N2K planet search program at Keck. We ob-
tained 24 radial velocity measurements at the Keck Observatory
with an average internal velocity precision of 1.6 m s�1. Obser-
vation dates, radial velocities, and uncertainties for 33 observa-
tions are listed in Table 4. The last column designates the source
of the observations as ‘‘K’’ (Keck Observatory) or ‘‘S’’ (Subaru
Observatory). The periodogram of the radial velocity data shows
a strong narrow peak at 21.1 days, with a FAP less than 0.0001
(for 10,000 Monte Carlo trials).

When combining the Subaru and Keck velocities, we first de-
termined a velocity difference of about 130 m s�1 between two
observations taken at Subaru and Keck on the same night
(JD 2,454,083.9).With that initial guess, we included a velocity off-
set as a free parameter, and found that an offset of 116.0 m s�1

produced aminimum (�2
� )

1=2. That offsetwas added to the Subaru
velocities listed in Table 4. The best-fit Keplerian model for the
combined Subaru and Keck data sets yields an orbital period of

TABLE 2

Radial Velocities for HD 11506

JD�2440000.

Radial Velocity

(m s�1)

Uncertainties

(m s�1)

13014.73505......... �6.67 2.94

13015.73893......... �6.58 2.89

13016.74089......... �18.73 2.98

13191.12201......... �43.89 3.56

13207.10116......... �71.30 3.17

13208.08401......... �56.92 3.41

13368.83778......... �80.87 2.26

13369.75897......... �80.35 2.18

13370.73242......... �81.24 2.17

13397.73009......... �75.66 2.36

13750.73807......... 59.16 2.67

13775.72853......... 71.94 2.77

13776.70435......... 74.90 2.57

13777.72528......... 76.27 2.93

13778.71858......... 78.70 2.73

13779.74737......... 71.93 2.77

13926.12744......... 73.68 2.66

13933.09065......... 75.37 2.62

13959.13935......... 80.47 2.46

13961.12421......... 81.24 2.73

13981.98256......... 74.91 3.12

14023.97438......... 44.32 3.07

14083.84327......... 26.82 2.44

14085.92115......... 38.66 2.54

14129.74332......... 56.29 2.48

14286.11838......... 28.66 3.01

Fig. 2.—Radial velocities for HD 11506. The velocity error bars have been
augmented by adding 2 m s�1 in quadrature to the single measurement precision
listed in Table 2. This gives (�2

�)
1=2 ¼ 3:2 for the Keplerian fit. With a stellar

mass of 1.19M�, we derive a planet mass ofM sin i ¼ 4:74 MJup and semimajor
axis a rel ¼ 2:48 AU.

TABLE 3

Orbital Parameters

Parameter HD 11506 HD 17156 HD 125612

P (days) ........................... 1405 (45) 21.2 (0.3) 510 (14)

Tp (JD) ............................ 13603 (102) 13738.529 (0.5) 13228.3 (12)

! (deg) ............................ 262 (19) 121 (11) 21 (9)

Eccentricity ..................... 0.3 (0.1) 0.67 (0.08) 0.38 (0.05)

K1 (m s�1) ....................... 80 (3) 275 (15) 90.7 (8)

dv/dt (m s�1 days�1) ...... . . . . . . 0.037

a rel (AU)......................... 2.48 0.15 1.2

a1 sin i (AU) ................... 0.0099 0.00039 0.0039

f1(m) (M�) ...................... 6.53e�08 1.83e�08 3.09e�08

M sin i (MJup) .................. 4.74 3.12 3.5

Nobs.................................. 26 33 19

rms (m s�1) ..................... 10.8 3.97 10.7

Jitter (m s�1) ................... 2 3 2

Reduced (�2
�)

1=2 .............. 3.2 1.17 3.56

FAP (periodogram)......... <0.0001 <0.0001 0.0003

FIVE PLANETS FROM THE N2K SAMPLE 1339No. 2, 2007



21:2� 0:3 days, a semivelocity amplitudeK ¼ 275� 15 m s�1,
and an orbital eccentricity e ¼ 0:67� 0:08. The rms to the fit is
3.97 m s�1. Adding jitter of 3 m s�1 (expected for this star) in qua-
drature with the actual single-measurement errors gives (�2

� )
1=2 ¼

1:04 for this Keplerian fit.
Adopting a stellar mass of 1.2 M�, we derive M sin i ¼

3:12 MJup and a semimajor axis of 0.15 AU. The Keplerian or-
bital solution is summarized in Table 3. The phase-folded plot of
the Doppler measurements for Keck and Subaru observations are

shown in Figure 3 (left), and include 3 m s�1 jitter. Keck obser-
vations are represented by diamonds, and Subaru observations
are shown as filled circles.
Because the high eccentricity is unusual, we examined the

Keplerian fit for the Keck data alone, shown in Figure 3 (right).
The Keck data have poor phase coverage near periastron, and
yield a Keplerian fit with lower amplitude and lower eccentricity.
The Subaru observations map periastron passage, and help to
model the eccentricity of the orbit.

3.3. Transit Search

The 21.22 day period of the companion to HD 17156 is by far
the shortest planetary orbital period in this paper. The orbital
semimajor axis of 0.15 AU and the stellar radius of 1.47 R� lead
to an a priori transit probability of 7% (Seagroves et al. 2003).
Therefore, we used our 241 brightness measurements to conduct
a preliminary transit search. The orbital parameters in Table 3
constrain the predicted times of transit to about�0.3 days, which
is slightly greater than the 0.25 day duration of a central transit.
We performed our transit search, using a technique similar to the
one described by Laughlin (2000), over all orbital phases for pe-
riods between 20 and 23 days. The search was negative, but was
only able to effectively cover 25% of the period-phase search
space, corresponding to the uncertainties in the orbital parame-
ters. Thus, our photometric data do not preclude the possibility of
transits in HD 17156.

4. HD 125612

4.1. Stellar Characteristics

HD 125612 is a G3 V main sequence star with V ¼ 8:31,
B� V ¼ 0:628, and Hipparcos parallax (ESA 1997) of 18.93,
corresponding to a distance of 52.82 pc and absolute visual mag-
nitudeMV ¼ 4:69. Spectroscopic analysis yields TeA ¼ 5897 �
40 K, log g ¼ 4:45� 0:05, v sin i ¼ 2:1� 0:5 km s�1, and
½Fe/H� ¼ 0:24� 0:03 dex. The bolometric correction is�0.061,
giving a stellar luminosity of 1.08 L�. The luminosity and TeA im-
ply a stellar radius of 1.0R�.Within uncertainties, this agreeswell
with the value of 1.05 R� determined from stellar evolutionary
tracks. We also derive a stellar mass of 1.1M� from stellar evo-
lution models, and an age of 2.1 Gyr.
Figure 1 shows the Ca H line for HD 125612; the lack of emis-

sion indicates low chromospheric activity for this star. Taking the
mean of 18 observations, wemeasure SHK ¼ 0:178 and log R0

HK ¼
�4:85, and derive Prot ¼ 10:5 days, with a stellar age of 3:3�
2 Gyr (which compares well with the age of 2.1 Gyr from

TABLE 4

Radial Velocities for HD 17156

JD�2440000.

RV

(m s�1)

Uncertainties

(m s�1)

Observatory

Keck /Subaru

13746.75596............ 88.49 1.70 K

13748.79814............ 138.15 1.73 K

13749.79476............ 151.35 1.67 K

13750.80160............ 169.65 1.76 K

13775.77821............ 235.17 1.83 K

13776.80791............ 253.80 1.81 K

13779.82897............ 239.14 1.64 K

13959.13219............ 97.33 1.55 K

13962.07028............ 152.64 1.51 K

13963.10604............ 165.48 1.68 K

13964.13118............ 194.69 1.70 K

13982.03231............ 132.55 1.20 K

13983.08575............ 146.35 1.70 K

13983.99480............ 166.11 1.32 K

13985.00847............ 187.22 1.57 K

14023.95206............ 114.39 1.77 K

14047.95773............ 166.01 1.74 K

14078.01162............ �116.60 5.14 S

14078.92501............ �261.56 5.18 S

14079.91371............ �164.10 5.23 S

14080.98093............ �89.57 5.13 S

14081.89406............ �44.08 5.15 S

14082.86071............ 2.39 5.14 S

14083.88445............ 37.62 5.16 S

14083.90314............ 32.76 1.33 K

14084.82860............ 63.22 1.63 K

14085.82560............ 86.67 5.20 S

14085.86537............ 84.28 1.56 K

14086.87960............ 99.01 5.20 S

14129.92513............ 113.30 1.43 K

14130.73019............ 133.66 1.32 K

14131.85485............ 151.11 1.77 K

14138.76720............ 261.56 1.37 K

Fig. 3.—Left: Radial velocities for HD 17156 from Keck Observatory (diamonds) and Subaru Observatory ( filled circles) have 3 m s�1 added in quadrature to the
uncertainties listed in Table 4 to account for expected photospheric jitter. Adopting a stellar mass of 1.2M�, we derive a planet massM sin i ¼ 3:12 MJup and semimajor
axis for the orbit a rel ¼ 0:15 AU. Right: Keck velocities only. Although the phase coverage misses periastron, the Keck velocities alone confirm high eccentricity in
HD 17156b.
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stellar evolution tracks). Stellar parameters are summarized in
Table 1.

4.2. Doppler Observations and Keplerian Fit

We obtained 19 Keck velocity measurements for HD 125612
with a typical uncertainty of 2.2 m s�1. Observation dates, radial
velocities, and instrumental uncertainties in the radial velocities
are listed in Table 5. A periodogram of the velocities shows a
strong broad peak at about 500 days.

The best-fit Keplerian model is plotted in Figure 4, and yields
a period of 510� 14 days, with a semivelocity amplitude of
90:7� 8 m s�1, an orbital eccentricity of 0:38� 0:05, and a
linear trend of 0.037 m day�1. Adopting a stellar mass of 1.1M� ,
we derive M sin i ¼ 3:5 MJup and a semimajor axis of 1.2 AU
(angular separation � ¼ 0:02300). The Keplerian orbital solution
is listed in Table 3, and the RV data are plotted with the best-fit
Keplerian model in Figure 4 (solid line).

The rms to the Keplerian fit shown in Figure 4 is 10.7 m s�1.
The velocity jitter for this star is expected to be about 2 m s�1.
Therefore, the residual rms is several times the typical error bar,
consistent with the poor (�2

� )
1=2 statistic of 3.56. A periodogram

of the residuals to a 510 day planet fit shows power near 3.5 days.
However, there are several other peaks of nearly comparable
height, showing that other orbital solutions may give similar im-
provements. Thus, while we could fit the residuals with a second
Keplerian, the FAP of the peak does not yet meet our standards
of statistical significance, and more data are required for fol-
low up.

5. HD 170469

5.1. Stellar Characteristics

HD 170469 is a G5 subgiant star with visual magnitude V ¼
8:21, B� V ¼ 0:677, and a Hipparcos parallax (ESA 1997) of
15.39 mas, corresponding to a distance of 64.97 pc. The absolute
visual magnitude of the star is MV ¼ 4:14. The bolometric cor-
rection is �0.072, providing a bolometric stellar luminosity of
1.6 L� and (with TeA) a stellar radius of 1.2 R�, calculated from

the luminosity. Evolutionary tracks provide a stellar mass estimate
of 1.14M�, a stellar radius of 1.22R�, and an age of 6.7 Gyr. Our
spectroscopic analysis gives TeA ¼ 5810� 44K, log g ¼ 4:32 �
0:06, v sin i ¼ 1:7� 0:5 km s�1 , and ½Fe/H� ¼ 0:30� 0:03 dex.

The Ca H & K lines (Fig. 1) indicate low chromospheric ac-
tivity. Taking the mean of 13 observations, we measure SHK ¼
0:145 and log R0

HK ¼ �5:06, and derive a rotational period Prot ¼
13:0 days and an activity-calibrated age (Noyes et al. 1984) of
7� 2 Gyr.

We obtained 215 brightness measurements with the T10 APT
spanning 630 days between 2005 March and 2006 November.
The standard deviation of the observations was 0.0018 mag, the
upper limit to photometric variability in HD 170469. A period-
ogram analysis found no significant periodicity between 1 and
315 days, confirming the star’s low chromospheric activity. The
stellar characteristics are summarized in Table 6.

5.2. Doppler Observations and Keplerian Fit

We obtained 35 Keck velocities for HD 170469 with a mean
velocity precision of 1.6 m s�1. Observation dates, radial veloc-
ities, and instrumental uncertainties in the radial velocities are
listed in Table 7. A periodogram of the velocities yields very
strong power at about 1100 days, with a FAP less than 0.0001.

The best-fit Keplerianmodel gives an orbital period of 1145�
18 days, a semivelocity amplitude of 12:0� 1:9 m s�1, and an or-
bital eccentricity of 0:11� 0:08. The rms to the fit is 4.18 m s�1,
with (�2

� )
1=2 ¼ 1:59, including an estimated astrophysical jit-

ter of 2.0 m s�1. Adopting a stellar mass of 1.14 M�, we derive
M sin i ¼ 0:67 MJup and a semimajor axis of 2 AU (� ¼ 0:0300).
TheKeplerian orbital parameters are listed in Table 8, and the RV
data are plotted with the best-fit Keplerian model in Figure 5
(solid line).

6. HD 231701

6.1. Stellar Characteristics

HD 231701 is an F8 V star with V ¼ 8:97, B� V ¼ 0:539,
andHipparcos parallax (ESA 1997) of 9.22 mas, corresponding
to a distance of 108.4 pc. The absolute visual magnitude isMV ¼
3:79, so this star is beginning to evolve onto the subgiant branch.
Spectroscopic analysis yieldsTeA ¼ 6208� 44 K, log g ¼ 4:33�
0:06, v sin i ¼ 4:0� 0:5 km s�1 , and ½Fe/H� ¼ 0:07� 0:03 dex.

TABLE 5

Radial Velocities for HD 125612

JD �2440000.

Radial Velocity

(m s�1)

Uncertainties

(m s�1)

13190.83262............ 52.80 2.85

13197.83363............ 61.40 2.66

13198.85557............ 60.49 2.59

13199.83792............ 44.35 2.70

13604.75480............ �60.07 2.04

13754.12824............ 45.68 1.83

13776.15380............ 17.80 2.03

13777.11940............ 21.71 2.16

13838.01492............ �77.76 2.35

13841.94894............ �86.49 2.52

13927.79007............ �90.28 2.01

13961.75080............ �79.07 2.01

13962.74127............ �80.81 1.83

13981.72862............ �83.16 1.90

13983.74037............ �81.92 2.11

13984.72815............ �80.88 2.03

14130.13392............ �22.62 2.18

14139.12383............ 1.31 1.94

14251.82778............ 90.28 2.39

Fig. 4.—Radial velocities for HD 125612. The velocity measurements have
2 m s�1 added to their error bars, listed in Table 5, to account for the level of as-
trophysical noise ( jitter) we expect from the star. With an assumed stellar mass
of 1.1M�, we derive a planet mass ofM sin i ¼ 3:5 MJup, and a semimajor axis
of 1.2 AU. This Keplerian model still has a high rms and (�2

� )
1=2 of 3.56, sug-

gesting the possible presence of an additional planet.
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The bolometric correction is�0.037, and bolometric luminosity
is 2.4 L� . The luminosity and effective temperature yield a stel-
lar radius of 1.36 R�. Modeling the stellar evolutionary tracks,
we derive a stellar mass of 1.14M�, a radius of 1.35 R�, and an
age of 4.9 Gyr.
The Ca H & K lines (Fig. 1) show that the star has low chro-

mospheric activity.WemeasureSHK ¼ 0:159 and log R0
HK ¼ �5:0,

and derive a rotational period, Prot ¼ 12:2 days and a stellar age
of 5:6� 2 Gyr. Stellar parameters are listed in Table 6.

6.2. Doppler Observations and Keplerian Fit

We obtained 17 Keck observations of HD 231701, with mean
internal errors of 3.2 m s�1. Observation dates, radial velocities,
and measurement uncertainties in the radial velocities are listed
in Table 9. The periodogram of this data set has a FAP of 0.006
for a period near 140 days.
The best-fit Keplerian model has an orbital period of 141:6�

2:8 days, with semivelocity amplitude 39� 3:5 m s�1 and an
orbital eccentricity of 0:1� 0:06. The rms to this fit is 5.9 m s�1.
The expected astrophysical jitter for this star is 2.2m s�1. Adding
this jitter in quadrature with the error bars listed in Table 9 yields
(�2

� )
1=2 ¼ 1:46 for this Keplerian fit. Adopting a stellar mass of

1.14M�, we deriveM sin i ¼ 1:08 MJup and a semimajor axis of

TABLE 6

Stellar Parameters

Parameter HD 170469 HD 231701

V ......................................... 8.21 8.97

MV ...................................... 4.14 3.79

B� V ................................. 0.677 0.539

Spectral type ...................... G5 IV F8 V

Distance (pc) ..................... 64.97 108.4

Lbol /L�................................ 1.6 2.4

[Fe/H] ............................... 0.30 (0.03) 0.07 (0.03)

TeA (K)............................... 5810 (44) 6208 (44)

v sin i (km s�1)................... 1.7 (0.5) 4 (0.50)

log g.................................... 4.32 (0.06) 4.33 (0.06)

Mstar (M�)
a ......................... (1.05) 1.14 (1.16) (1.08) 1.14 (1.22)

Rstar (R�)
a ........................... (1.15) 1.22 (1.3) (1.16) 1.35 (1.55)

Age (Gyr)a ......................... (5.0) 6.7 (7.8) (3.5) 4.9 (6.2)

SHK ..................................... 0.145 0.159

log R0
HK ............................... �5.06 �5.00

Prot (days)........................... 13.0 12.2

�phot (mag) ......................... 0.0018 . . .

a Stellar masses, radii, and ages are derived from evolutionary tracks.

TABLE 7

Radial Velocities for HD 170469

JD�2440000.

Radial Velocity

(m s�1)

Uncertainties

(m s�1)

11705.96808......... 6.04 1.51

11793.81330......... �0.05 1.39

12008.04881......... �10.21 1.50

12099.03294......... �14.05 1.59

12162.76894......... �15.48 1.42

12364.13287......... �7.07 1.67

12390.12499......... �2.46 1.63

12391.12567......... 2.80 1.76

12445.93867......... �12.12 1.72

12515.82777......... 14.53 1.96

12535.75539......... 3.45 1.53

12536.74191......... 0.06 1.50

12537.82520......... 1.72 1.50

12538.74254......... 0.83 1.30

12539.75501......... 4.11 1.51

12572.69435......... 6.59 1.60

12573.69333......... 5.76 1.34

12574.70725......... 10.11 1.45

12575.69822......... 2.35 1.40

12778.04455......... 15.48 1.96

12804.05044......... 7.80 1.56

12848.92274......... 5.06 2.35

13180.90825......... �14.03 1.55

13181.89752......... �12.91 1.57

13548.99248......... �2.83 1.54

13603.80234......... 4.11 1.50

13842.01212......... 9.79 1.59

13932.96654......... 14.41 1.49

13960.91798......... 10.12 1.42

13961.83115......... 11.29 1.54

13981.82421......... 7.85 1.27

13982.77494......... 5.33 1.26

13983.76067......... 5.96 1.33

13984.83377......... 7.38 1.22

14250.01196......... �4.92 1.57

TABLE 8

Orbital Parameters

Parameter HD 170469 HD 231701

P (days).................................. 1145 (18) 141.6 (2.8)

Tp (JD) ................................... 11669.0 (21) 13180.0 (4.2)

! (deg) ................................... 34 (19) 46 (24)

Eccentricity ............................ 0.11 (0.08) 0.10 (0.08)

K1 (m s�1) .............................. 12.0 (1.9) 64 (8)

dv/dt (m s�1 days�1) ............. . . . . . .

arel (AU) ................................ 2.1 0.53

a1 sin i (AU) .......................... 0.00126 0.0005

f1(m) (M�) .............................. 2.03e�10 8.6e�10

M sin i (MJup) ......................... 0.67 1.08

Nobs......................................... 35 17

rms (m s�1) ............................ 4.18 5.90

Jitter (m s�1) .......................... 2.0 2.22

Reduced (�2
� )

1=2 ..................... 1.59 1.46

FAP (periodogram)................ <0.0001 0.006

Fig. 5.—Keck radial velocities for HD 170469, including 2.0 m s�1 added in
quadrature with the internal error bars listed in Table 7. With the added jitter, the
Keplerian fit has (�2

�)
1=2 ¼ 1:59. The assumed stellar mass of 1.14 M� yields a

planet mass of M sin i ¼ 0:67 MJup and a semimajor axis of about 2 AU.
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0.53 AU. The Keplerian orbital solution is listed in Table 8, and
the phased RV data are plotted with the best-fit Keplerian model
in Figure 6 (solid line).

7. DISCUSSION

Here, we present the detection of five new exoplanets detected
with Doppler observations. For each of theKeplerianmodels, we
also carried out a Markov Chain Monte Carlo (MCMC) analysis
to better estimate the orbital parameters and their uncertainties,
following the algorithm described by Ford (2003). Unlike the
Levenberg-Marquardt algorithm that we generally use to deter-
mine a best-fit Keplerian orbit, the MCMC analysis provides the
full posterior probability density distribution for each parameter.
This approach is particularly useful for data sets where the
Levenberg-Marquardt algorithm can minimize (�2

� )
1=2 with a

model that fits a sparse data set. The MCMC algorithm explores
a wider range of parameter space, because it is not driven solely
by (�2

� )
1=2 minimization. However, MCMC does not explore an

exhaustive range of parameter space. For example, solutions with
very different orbital periods might be missed. For each of the
models presented here, we began with the input parameters found
with Levenberg-Marquardt fitting, and confirmed that the orbital

elements were recovered with strongly peaked probability distri-
butions using MCMC.

HD 170469 is a star on the regular planet search at Keck that
has a planet ofM sin i ¼ 0:66 MJup in a�3 yr orbit, with eccen-
tricity 0.23. The host star is metal-rich with ½Fe/H� ¼ 0:3. The
remaining four exoplanets were initially part of the N2K pro-
gram at Keck. The N2K program targets metal-rich stars for rapid
identification of short-period planets. The first three radial velocity
measurements for the stars presented here had rms scatter less than
5 m s�1 (except HD 17156, with initial rms scatter of 34 m s�1 ),
so these stars were not candidates for short-period planets. How-
ever, a follow-up program to obtain Doppler observations on
N2K-vetted high-metallicity stars with low chromospheric activ-
ity and low rms velocity scatter has detected the presence of these
longer period planets.

HD 11506b is a fairly massive planet, withM sin i ¼ 4:74 MJup

and a semimajor axis of 2.5 AU. This could well constitute the
outer edge of a habitable zone location for putative rocky moons
orbiting the planet, depending on the atmospheric properties of
any moons. The host star has a luminosity of 2.3 L�. The eccen-
tricity of this system is 0.3, so the temperature at the top of the
planet’s atmosphere would change by about 50K between apastron
and periastron.

HD 17156b has a mass of M sin i ¼ 3:12 MJup and an orbital
period of 21.2 days, placing it in the so-called period valley be-
tween 10 and 100 days (Udry et al. 2003), where a relatively small
fraction of exoplanets have been detected. We derive a substantial
orbital eccentricity of 0.67 for HD 17156b. At this proximity to the
subgiant host star, the planet moves between 0.05 and 0.25 AU,
experiencing temperature changes of a few hundred degrees be-
tween periastron and apastron. It is possible that these thermal
changes could be observed with sensitive IR flux measurements
from space, even though the planet is not known to transit its host
star.

The distribution of orbital eccentricities for known exoplanets
is shown in Figure 7. An upper envelope in the distribution of
eccentricities rises steeply from periods of a few days to reach the
maximum observed eccentricities (for HD 80606 and HD 20782)
at periods of 100Y1000 days. Although an orbital eccentricity of
0.67 seems remarkable for HD 17156b, given its orbital period of
just 21.2 days, the eccentricity still falls along the upper edge
of the observed eccentricity distribution.

TABLE 9

Radial Velocities for HD 231701

JD�2440000.

Radial Velocity

(m s�1)

Uncertainties

(m s�1)

13190.98047..................... 1.98 3.41

13198.03808..................... �2.44 4.00

13199.02309..................... �11.19 3.74

13199.95689..................... �16.16 3.62

13603.87134..................... 40.18 3.32

13928.04498..................... �38.57 2.90

13931.08095..................... �32.84 2.93

13932.02123..................... �36.55 3.38

13961.87814..................... �31.29 3.34

13981.76292..................... 5.66 3.18

13983.77988..................... 5.49 3.11

14023.71873..................... 25.79 3.53

14083.69519..................... �39.18 2.43

14085.70009..................... �37.48 2.83

14217.13510..................... �40.18 2.99

14250.07410..................... �15.89 2.90

14286.00169..................... 31.17 2.86

Fig. 6.—Phase-folded radial velocities for HD 231701, including stellar jit-
ter of 2.2 m s�1 added to the errors listed in Table 9, giving (�2

� )
1=2 ¼ 1:46. The

stellar mass of 1.14M� implies a planet mass ofM sin i ¼ 1:08 MJup and an or-
bital radius of 0.53 AU.

Fig. 7.—Orbital eccentricity distribution for exoplanets. A rising envelope
defines the distribution for planets with periods between 2 and 100 days. The
distribution peaks for periods between 100 and 1000 days. The arrow points to the
dot representing HD 17156b. With an orbital period of 21 days and eccentric-
ity of 0.67, HD 17156b still fits within the envelope of this eccentricity distribution.
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HD 125612b has M sin i ¼ 3:5 MJup, with a semimajor axis
of 1.2 AU. This planet has an eccentricity of 0.38. The planet is
carried from 0.47 AU at periastron, where the temperature at
the top of the atmosphere is about 300K, to about 2.1 AU, where
the temperature falls below the freezing point of water to about
200 K. A single planet model does not appear to adequately de-
scribe the velocities of HD 125612, because the rms to that fit is
10.7 m s�1; yet the star is chromospherically quiet and slowly
rotating, with v sin i ¼ 2 km s�1. This star may well have an ad-
ditional planet orbiting in a relatively short period.

Velocity variations in HD 231701 have been modeled as a
planet with M sin i ¼ 1:08 MJup, a semimajor axis of 0.53 AU,
and orbital eccentricity of about 0.1. The MCMC probability dis-

tributions forHD231701 are consistentwith thisKeplerianmodel,
but allow for eccentricity solutions that extend to zero. This anal-
ysis alerts us that more RV measurements should be taken to
better constrain the orbital eccentricity of this system.
We have now obtained three or more Doppler observations for

423 stars at Keck Observatory as part of the N2K program.
Spectral synthesis modeling has been carried out for all of these
stars, and we plot the percentage of stars with detected planets in
each 0.1 dex metallicity bin in Figure 8. Superimposed on this
plot is the planet detectability curve from Fischer & Valenti (2005).
A planet probability can be assigned based on the stellar metallic-
ity. Integrating planet probabilities, we expect 27� 5 exoplanets
with masses greater than 1MJup and orbital periods shorter than
4 years. Fourteen, or about half of the expected planets in the
sample, have now been detected.
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