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Structure and Temperature Regulated Expression
of a Cysteine Proteinase Gene in
Pachysandra terminalis Sieb. & Zucc.
Suping Zhou1, Roger Sauve, and Fur-Chi Chen
Tennessee State University, Institute of Agricultural and Environmental Research, 3500
John A. Merritt Blvd., Nashville, TN 37209

ADDITIONAL INDEX WORDS. cold, heat, dark, pro region motif, papain-like proteinase, real-time-qRT-PCR

ABSTRACT. A cysteine proteinase gene (DQ403257) with an open reading frame of 1125 base pairs was isolated from
Pachysdandra terminalis. The primary translated peptide has a predicted length of 374 amino acids, pI (isoelectric
point) of 5.70, and molecular mass of 40.9 kDa. The Peptidase_C1 domain is between residue 141 and 367. The
proteinase has a conserved motif Gly-Xaa-Thy-Xaa-Phe-Xaa-Asn in the pro region. Sequence comparison shows
that the deduced peptide shares 82% identity with the cysteine proteinase RD19a precursor (RD19) (accession
P43296) from Arabidopsis thaliana (L.) Heynh. Real-time quantitative reverse-transcriptase–polymerase chain
reaction revealed that the gene is induced by treatments of 1 to 7 days of darkness, 2 hours and 3 to 7 days at 5 8C, and
3 days at 38 8C.

Proteinases are the catalyst in the hydrolysis reaction of
peptide linkages in oligopeptides or polypeptides (van der
Hoorn et al., 2004). The enzymes function to maintain strict
protein quality control by degrading specific sets of proteins in
response to diverse environmental and developmental stimuli.
Proteinases are grouped into four major classes according to
their catalytically important residues: serine proteinases (e.g.,
trysin), cysteine protease (papain), aspartic acid proteinase
(pepsin), and metalloproteinases (thermolysin and carboxypep-
tidase A).

Cysteine proteinases are a class of enzymes requiring the
thiol group of a cysteine residue for their catalytic activity.
Many cysteine proteinases from animals, plants, and microbial
sources have been characterized (Rawlings and Barrett, 1994).
Cysteine proteinases have emerged as key enzymes in the
regulation of programmed cell death in animals and plants
(Solomon et al., 1999). They are induced by environmental
stresses such as drought (Guerrero et al., 1990; Harrak et al.,
2001; Koizumi et al., 1993; Williams et al., 1994), salt
(Koizumi et al., 1993), and temperature (Schaffer and Fischer,
1990). These enzymes are involved in developmental processes
of senescence (Drake et al., 1996; Griffiths et al., 1997; Jones
et al., 2005; Ueda et al., 2000), seed maturation and germination
(Becker et al., 1994; Domoto et al., 1995; Jones et al., 1996;
Okamoto et al., 2001; Shintani et al., 1995; Tsuji et al., 2004).
Proteinases can affect activity of other enzymes by breaking
some of the peptide bonds and cause changes in the quaternary
or tertiary structures of targeted proteins. Peroxidase and
rubisco-1, 5-bisphosphate carboxylase–oxygenase is found to
be activated by proteinases (Chollet and Anderson, 1977;
Grzywnowicz et al., 1992, 1993). Cystenine proteinase is

involved in disease resistance by activating different disease
resistance proteins (Avrova et al., 1999).

We have cloned a full-length cystenine proteinase gene from
P. terminalis while analyzing its mechanism for cold tolerance.
This article reports the structural characterization of the
encoded proteinase protein. Recent evidence demonstrates that
activation of gene expression constitutes one response to
temperature stresses (Provart et al., 2003). Real-time quantita-
tive reverse transcriptase (qRT-PCR) has been used to quantify
the level of transcripts present in plant organs (Charrier et al.,
2002; Lammers et al., 2001), thus predicting the transcription
regulation of the genes. This technique was used to evaluate the
regulation of low and high temperature stresses on the cloned
gene.

Materials and Methods

CDNA LIBRARY CONSTRUCTION AND SCREENING. Total RNA
extraction, cDNA library construction, and screening followed
the same procedure as previously described (Zhou et al., 2006).
Briefly, a cDNA library was constructed with mRNA extracted
from cold-treated leaf tissues and packed into lgt11 phagemid
using the ZAP-cDNA Synthesis and ZAP- cDNA Gigapack III
Gold Cloning Kit (Stratagene, La Jolla, Calif.). The leaf cDNA
library was screened by plaque hybridization using the
230-base pair (bp) insert fragment of a PCR clone previously
isolated (Zhou et al., 2005). The probes were labeled with
32P-dATP through random priming methods described in the
Hot-Prime Kit (Genhunter, Nashville, Tenn.). Through second
plague hybridization, the positive clones were isolated and
phage DNA was prepared from them. The cDNA was sub-
cloned into pBlueScript SK-phagemid vector.

TEMPERATURE TREATMENTS AND REAL-TIME QUANTITATIVE

REVERSE TRANSCRIPTASE POLYMERASE CHAIN REACTION ASSAY.
Seedlings with two mature leaves (dark green) and two fresh
leaves (light green and fully expanded) were supplied by Yoder
Brothers (Barberton, Ohio). On arrival, these seedlings were
incubated at 25 �C and weak light (indoor of the laboratory) for
3 d to recover from stresses induced during transportation
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process. Leaf tissues collected at this stage were considered
controls. For temperature treatments, these plants were incu-
bated at 25, 5, and 38 �C in total darkness for 2 h, 4 h, 9 h, 23 h,
2 d, 3 d, 6 d, and 7 d. At the end of each treatment, fresh leaves
were harvested from a pool of three plants. Isolation of total
RNA and removal of genomic DNA followed the same
procedures as described by Zhou et al. (2006).

The oligonucleotide primers specific for the proteinase gene
were 5#-GTTCAAAGCGGTTGTTGGAT-3#-forward/5#-
TCCCTTTTCTCCCCAACTCT–3#-reverse (amplicon size
110 bp). The housekeeping gene 18S ribosomal RNA (18S
rRNA) was selected to normalize the result of q-PCR reactions.
Its primers were designed using the GeneBank sequence
(accession NC-003071). The forward/reverse primers were
5#-GGGGGCATTCGTATTTCATA-3#/5#-AACATCCT
TGGCAAATGCTT –3# (amplicon size 100 bp). The real-time
PCR reaction mixtures contained cDNA (100 pg total RNA),
primer mix (250 mM each), and 2· PCR master mix supplied in
the SYBR-green PCR mix/RT kit (Applied Biosystems, Foster
City, Calif.). The PCR amplification was preformed using a
program of 40 cycles of 94 �C, 30 s, and 60 �C, 1 min on a 7000
Real Time PCR System (Applied Biosystems). At the end of the
40 cycles, the data were analyzed with the ABI Prism 7000 SDS
software (Applied Biosystems) and reported as cycle threshold
(CT) value. Primer specificity was validated by the dissociation
kinetics and separation of PCR products on agarose gels.

In one experiment, three CT values, corresponding to the
absolute transcript levels, were produced for each sample. The
experiments were repeated three times independently, and the
data were averaged. To minimize errors introduced during
handling process, each real-time PCR reaction was repeated
two times to produce two CT values. The results were averaged
and considered as the CT value for that PCR reaction. Data
analysis was through the relative quantification using the
comparative CT method (ABI Prism 7700 Sequence Detection
System, User Bulletin #2; Applied Biosystems). Values of
DCT were calculated to represent the accumulation of gene
transcripts. Fold changes were used to compare difference
between treatment and control.

PRIMER DESIGN AND SYNTHESIS, SEQUENCE ANALYSIS, AND

DATABASE SEARCH. DNA sequence analysis was performed on
a 3100 Avant Genetic Analyzer using a BigDye Terminator
3.1 Cycle Sequencing Kit (Applied Biosystems). All the PCR
primers were designed using OligoPerfect Designer (Invitro-
gen, 2006). The primers and DNA sequence primers were
purchased from Invitrogen (Carlsbad, Calif.). Protein trans-
lation was performed using ExPaSy translation tool (Swiss
Institute of Bioinformatics, 2006). The conserved domains were
predicted using MotifScan (Falquet et al., 2002). Signal peptide
was predicted with the eukaryotic linear motif resources for
functional sites in proteins (Puntervoll et al., 2003).

Results

CLONING AND CHARACTERIZATION OF THE PUTATIVE CYSTEINE

PROTEINASE IN P. TERMINALIS. A 230-bp cDNA clone has been
previously isolated from leaf tissues of P. terminals that shared
high identity with C-terminal sequence of cysteine proteinases
(Zhou et al., 2005). Screening of �2.0 · 105 independent
recombinant clones from a lgt11 cDNA library with this
fragment identified two positive clones. Comparison of the nucleo-
tide sequences of the cDNAs revealed that these two positive

clones were identical. Both have a length of 1350 bp and an
open reading frame of 1125 bp (NCBI accession DQ403257).

To characterize the primary structure of the gene, the DNA
sequence was translated into protein using the ExPaSy trans-
lation tool. The deduced polypeptide has a predicted length of
374 amino acids, molecular mass of 40.9 kDa, and a pI of 5.70.
The polypeptide showed an identity of 82% to the cysteine
proteinase RD19a precursor (RD19) in A. thaliana (P43296),
80% to the cysteine proteinase 1 precursor in Zea mays L.
(Q10716D), and 75% to the cysteine proteinase 15A precursor
in Pisum sativum L. (P25804, Turgor-responsive protein 15A).
Further structural analysis revealed that the primary translation
product of the cloned gene (DQ403257) has three regions: a
signal sequence, a pro region, and mature proteinase domain
(Fig. 1), similar to most of the cysteine proteinases (Kassell and
Kay, 1973; Neurath, 1984; van der Hoorn et al., 2004).

IDENTIFICATION OF THE CONSERVED MOTIF IN THE PRO REGION

OF CYSTEINE PROTEINASE FROM DIFFERENT PLANT SPECIES. The
signal sequence and pro regions are variable among cysteine
proteinases. Vernet et al. (1995b) aligned 56 cysteine protein-
ases and identified a conserved amino acid motif of a stretch of
seven residues located between -42 and -36 (papain numbering)
in the pro region. This sequence motif is Gly-Xaa-Asn-Xaa-
Phe-Xaa-Asp (GxNxFxD). It appeared in all noncathepsin B
and C members of papain group and, in the case of kinetoplas-
tids, the place of Asn is replaced by Thr and the motif becomes
Gly-Xaa-Try-Xaa-Phe-Xaa-Asp (GxTxFxD). Table 1 shows
the conserved motif of cysteine proteinases from different plant
species. The GxTxFxD motif is conserved in P. terminalis,
A. thaliana, Phaseolus vulgaris L., Ipomoea batatas (L.) Lam.,
Vigna mungo (L.) Hepper, Z. mays, Phaseolus vulgaris L.,
P. sativum, Lycopersicon esculentum Mill, Brassica napus L.,
and Solanum tuberosum L. Some of the plant species contain
cysteine proteinases that have either the motif of GxNxFxD or
GxTxFxD. In the case of A. thaliana, seven of the cysteine
proteinases have the conserved motif as GxTxFxD
(AAM96982, T13022, E85435, AAK92229, JN0719,
BAB02464, BAB02463). Three proteinases have the motif
GxNxFxD (AAM65468, AAB67626, T13023). It also has the
motif as DINEFSD (Xaa-Xaa-N-Xaa-F-Xaa-D). The Xaa-Xaa-
N-Xaa-F-Xaa-D format also exists in Nicotiana tabacum L.
(78,660), Mesembryanthemum crystallinum L. (AAA74430),
and Oryza sativa L. (CAA56844).

Fig. 1. Primary structure of deduced cysteine proteinase peptide (accession
DQ403257) in Pachysandra terminalis. The polypeptide has a predicted
length of 374 amino acids. The signal sequence (1–19) is marked in bold. The
Peptidase_C1 domain is italicized (141–367). Protein translation was per-
formed using ExPaSy translation tool (Swiss Institute of Bioinformatics,
2006). The conserved domains were predicted using MotifScan (Falquet et al.,
2002). Signal peptide was predicted with the eukaryotic linear motif resources
for functional sites in proteins (Puntervoll et al., 2003).

98 J. AMER. SOC. HORT. SCI. 132(1):97–101. 2007.



EFFECT OF COLD AND HEAT STRESSES ON GENE EXPRESSION OF

THE PUTATIVE CYSTEINE PROTEINASE GENE FROM P. TERMINALIS.
When the real-time PCR products were separated on 2%
agarose gels, one specific band in all the temperature treatments
was observed for the cysteine protease (110 bp) and18S rRNA
(100 bp) (Fig. 2). These results validated the primer specificity
and efficiency of the real-time PCR.

qRT-PCR measures relative abundance of gene transcripts
in different tissues. Results from the current study shows that
transcript accumulation of the proteinase gene is affected by
darkness, cold, and heat stresses. When plants were incubated at
25 �C, 2-h darkness induced a decrease of gene transcripts
present in the leaf tissues. The expression level is lower than
control (0 h) (Table 2). Extending the darkness to 1 d, 2 d, and
3 d induced a continuous elevation of gene transcript accumu-
lation by 2.2-, 3.9-, and 4.3-fold, respectively. The level of the
gene transcripts started to decrease at 6 d and 7 d and the value
became approximately twofold compared with control. The

interaction of temperature stresses and darkness caused tem-
poral changes in the induction of the proteinase gene. Combi-
nation of short-term (2 h) cold (5 �C) and darkness (2 h) induced
a 1.83-fold increase. Further exposure to chilling stress delayed
the induction of the proteinase gene but increased the multitude.
The expression level showed no obvious changes until 3 d, but
fold changes increased from fourfold to sevenfold. The most
obvious is the 7-d treatment; the cold treatment induced an
8.85-fold increase compared with 2.56-fold at 25 �C. The heat
stress functions in a similar pattern. The gene induction delayed
until 3 d of treatment, but the intensity was a 9.8-fold increase.

Discussion

The pro peptide regions serve a variety of functions in vivo
and in vitro. It is required for the proper folding of the newly
synthesized enzyme, the inactivation of the proteinase domain,
and stabilization of the enzyme against denaturing at neutral

Table 1. The conserved motif within the pro region of cysteine proteases of different plant species.

Plant species Gene accession Propeptide motif Gene expression

Arabidopsis thaliana AAM96982 GVTQFSDz N/A
A. thaliana AAD23687 GVTQFSDz N/A
A. thaliana B84601 GVTQFSDz Wilt inducible
A. thaliana JN0718 GVTQFSDz Drought-inducible
Phaseolus vulgaris CAB17077 GVTQFSDz N/A
Ipomoea batatas AAK27969 GVTQFSDz N/A
Vigna mungo BAA92495 GVTKFSDz Seed germination
Zea mays BAA08244 GVTKFSDz Seed germination and ripe
Pisum sativum P25804 GITKFSDz Turgor-responsive
Lycopersicon esculentum CAA78403 GITQFSDz N/A
Pachysandra terminalis DQ403257 GVTQFFDz Chilling-inducible
Brassica napus ABA71355 GVNQFTDz N/A
Solanum tuberosum CAB53515 GLTKFADz Disease resistance
A. thaliana T13022 GLTGFADz Drought-inducible
A. thaliana E85435 GLTKFTDz N/A
A. thaliana AAK92229 GLTKFTDz Seed germination
A. thaliana JN0719 GLTRFADz Drought-inducible
A. thaliana BAB02464 GLTRFADz Unknown
A. thaliana BAB02463 GLTRFADz Unknown
L. esculentum CAA88629 GINEFTDy Leaf senescence-inducible
L. esculentum AAM19209 GMNEFADy Disease resistance
Nicotiana tabacum BAA96501 GVNEFTDy Circadian and senescence-enhanced
A. thaliana AAB67626 GVNEFADy N/A
P. sativum CAA92583 GVNHFADy Seed germination
P. vulgaris CAB17074 GLNKFADy Seed germination
N. tabacum CAB16317 GLNQFADy Seed germination
Z. mays CAA68192 GINRFADy Senescence-enhanced
Z. mays BAA08245 GINRFADy Seeds ripe and germination
I. batatas AAK27968 GINAFADy Senescence
P. vulgaris CAB17076 GLNRFADy Seed germination
A. thaliana T13023 GLNRFADy Drought-inducible
A. thaliana AAM65468 GLNKFSDy N/A
Oryza sativa CAA56844 ALNKFADx Seed germination
N. tabacum 78660 KLNKFADx N/A
A. thaliana AAD15594 DINEFSDx N/A
Mesembryanthemum crystallinum AAA74430 RLNQFGDx Drought-inducible
zMotif = Gly-Xaa-Try-Xaa-Phe-Xaa-Asp–36 (GxTxFxD).
yMotif = Gly-Xaa-Asn-Xaa-Phe-Xaa-Asp–36 (GxNxFxD).
xMotif = Xaa-Xaa-Asn-Xaa-Phe-Xaa-Asp–36 (XxTxFxD).
N/A = Not available.
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to alkaline pH conditions (Vernet et al., 1995a). Amino acid
residues within the pro region mediate their membrane associ-
ation and play a role in the transport of the proenzyme to
lysosomes. The variation in the conserved motif of plant
proteinases is much bigger than in other eukaryotes species.
This phenomenon could be related to species and the range of
environment in which plants have evolved. However, no
relationship can be identified between the variation of the
conserved motif and the possible function of the proteinases as
indicated by their involvement in different physiological pro-
cesses (Table 1). This may be the result of limited availability
of information on the specific function of different proteinases
and from different plant species.

The temperature treatments were performed under continu-
ous darkness, which is different from the diurnal photoperiod
that plants normally experience. Results from the current study
indicate that the proteinase gene transcription can be sup-
pressed within 2 h by change of light conditions, or the
dark-shock induces degradation of the gene transcripts. Both
processes can lower accumulation of gene transcripts in the
leaf tissues. The plants will get adjusted to the darkness and
maintain the proteinase gene expression similar to control (0 h)
in the next 9 h. However, a longer period (>1 d) of darkness can
induce a light constraint and thus expression of the stress-
related proteinase gene. Changes in gene expression in response
to light changes have been documented in other plant species
(Wierstra and Kloppstech, 2000).

P. terminalis is a cold-hardy herbaceous perennial plant
species. The plants can survive –6.6 to –1.1 �C (USDA zones
6–9). In this study, we noticed that the leaves appear normal
within 2 d when incubated at 38 �C in total darkness. These
observations suggest that the plant species is highly tolerant to
both high and low temperature extremes. The qRT-PCR assay
shows that proteinase gene transcription remains stable for a
minimum of 2 d under chilling and heat stresses, suggesting that
the plants are maintaining a stable state of metabolism during
this time period. However, a few leaves started to wilt and
dehydrate after 3 d at 38 �C. Chlorotic spots appeared on some
of the young leaves incubated for 6 d at 5 and 25 �C. Under both
conditions, the plants are undergoing a degenerative process.
Although the leaf samples were collected from normal-looking
plants, they may be experiencing or adjusting to the corre-
sponding changes. That can be the reason why the proteinase
gene is highly enhanced at this stage.

In plants and other organisms, proteinase activity can be
regulated at different levels: by transcription/translation, by
posttranslational processing, and by specific proteinase inhib-
itor proteins (Bode and Huber, 1992). Cold and heat stresses
can induce breakdown of cellular structure (Ilker et al., 1979)
and leakage of solutes and electrolytes (Lieberman et al., 1958)
that could lead to polypeptide denaturation. The proteinases
might function by degrading polypeptides damaged or de-
natured by exposure to temperature stresses. In tomato
(L. esculentum) unripe fruit under 4 �C cold treatment,
induction of a papain-like thiol proteinase gene expression
was detected after 8 h and kept on increasing after 16 and 48 h
incubation (Schaffer and Fischer, 1988, 1990). The current
study showed that the cold regulation of the putative cysteine
proteinase gene was time-dependent. It was enhanced after 2 h
followed by a phase of recovering back to the control (before
cold treatment) level within 1 d. Compared with the cold-
sensitive tomato, Pachysdandra terminalis has much higher
tolerance to low temperature. Based on the cold tolerance charac-
teristics and gene expression pattern, it is postulated that one of
the mechanisms for cold tolerance is that the tolerant plants will
respond very fast to the environmental stress by expression of
stress-related genes such as the proteinase to eliminate the
denatured proteins or to activate other stress-related enzymes.
After the initial phase, the plants will return to a normal
metabolism state and thus the proteinase gene expression will
start to decrease. However, a long period of chilling stresses (>3 d)
may induce changes in cellular metabolism system, in which the
enhanced expression of the proteinase is one of the components.
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