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ABSTRACT

Keck/HIRES precision radial velocities of HD 207832 indicate the presence of two Jovian-type planetary
companions in Keplerian orbits around this G star. The planets have minimum masses of M sin i = 0.56 MJup
and 0.73 MJup, with orbital periods of ∼162 and ∼1156 days, and eccentricities of 0.13 and 0.27, respectively.
Strömgren b and y photometry reveals a clear stellar rotation signature of the host star with a period of 17.8 days,
well separated from the period of the radial velocity variations, reinforcing their Keplerian origin. The values of the
semimajor axes of the planets suggest that these objects have migrated from the region of giant planet formation
to closer orbits. In order to examine the possibility of the existence of additional (small) planets in the system,
we studied the orbital stability of hypothetical terrestrial-sized objects in the region between the two planets and
interior to the orbit of the inner body. Results indicated that stable orbits exist only in a small region interior to
planet b. However, the current observational data offer no evidence for the existence of additional objects in this
system.

Key words: planetary systems – stars: individual (HD 207832)

1. INTRODUCTION

The planetary census has currently exceeded an impressive
750 extrasolar planets. Planetary companions have been
successfully detected using a variety of techniques, primarily
radial velocity (RV) and transit photometry, with more than 700
and close to 230 planets detected by each method, respectively.
Other successful techniques include microlensing (15 planets;
see, e.g., Batista et al. 2011), astrometry (e.g., Muterspaugh et al.
2010), stellar pulsations (Silvotti et al. 2007), direct imaging
(31 planets; see, e.g., Chauvin et al. 2005; Kalas et al. 2008;
Marois et al. 2010), and the transit timing variation method
(16 planets; see, e.g., Holman et al. 2010; Lissauer et al. 2011;
Doyle et al. 2011; Welsh et al. 2012).

The RV method has been used to characterize ∼92% of all
known planets, and continues to be the dominant technique.
Both its continued productivity and its ability to accurately
probe planetary architectures into the vicinity of the terrestrial-
mass region (e.g., Rivera et al. 2005; Mayor et al. 2009; Vogt
et al. 2010; Anglada-Escudé et al. 2012) are a testament to the
capability of this technique and its rapid technological advances.
For the past 18 years, we have used this technique and monitored
a large number of nearby stars with the High Resolution Echelle
Spectrometer (HIRES) at the Keck observatory. In this paper,
we present new RV and photometric observations for one of our
target stars: HD 207832.

The plan of this paper is as follows. In Section 2, we discuss
the basic properties of HD 207832. In Section 3, we describe the
new RVs, derive a Keplerian two-planet model of the system,
and describe the new automatic photometric telescope (APT)
observations. Finally, in Section 4, we discuss the properties of
this new planetary system and the possibility of its hosting other
planetary bodies.

2. HD 207832 PROPERTIES

HD 207832 (also known as CD-2615858, CPD-267292,
SAO190699, 2MASSJ21523626-2601352, HIP 107985, and

TYC6956-00378-1) is a G5 dwarf with a visual magnitude of
8.786 ± 0.014. We present in Table 1 a few basic parameters
of this star. Unless otherwise noted, the data are as listed in
the SPOCS (Valenti & Fischer 2005) and the NASA NStED
databases.5

HD 207832 has a metallicity of [Fe/H] = 0.06 and an age
<4.5 Gyr (Holmberg et al. 2009). The parallax of this star,
as revised by van Leeuwen (2007), is 18.37 ± 0.92 mas,
which corresponds to a distance of 54.4 ± 2.7 pc. As a
result, HD 207832 has an absolute visual magnitude (Mv) of
5.11 ± 0.11. The bolometric correction of HD 207832 in the
visual is −0.080 ± 0.055 (Masana et al. 2006) implying an
absolute bolometric magnitude of 5.03 ± 0.12. Assuming 4.75
for the corresponding quantity for the Sun, this bolometric
magnitude points to a luminosity of 0.773 ± 0.085 L� for this
G star.

The simple mass–luminosity relationship for main-sequence
stars, M = L1/3.9, indicates that the mass of HD 207832 is ap-
proximately 0.94 ± 0.10 M�. This is in good agreement with the
value determined from interpolation tables in Gray (1992) and
the value of 0.97 M� as reported by Nordstroem et al. (2004).
HD 207832 has a semi-diameter of 0.077 ± 0.001 mas (Masana
et al. 2006), which given its distance of 54.4 pc indicates a
stellar radius of 0.901 ± 0.056 R�. Using the above-mentioned
values of mass and radius, we find a simplistic estimate for
log g = 4.502 ± 0.071, in good agreement with the expected
range of values for a main-sequence G star. The effective tem-
perature of HD 207832, obtained from the Stefan–Boltzmann
law with the luminosity and radius as mentioned above, is
5710 ± 81 K, which is in rough agreement with 5649 K as
reported by Holmberg et al. (2009).

The value of V sin i for HD 207832 is approximately 3 km s−1

(Nordstroem et al. 2004). From our photometry presented in the
next section, we determined a rotation period of 17.8 days.
While obtaining the RVs presented here, we measured the Mt.

5 http://nsted.ipac.caltech.edu/
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Table 1
Stellar Parameters for HD 207832

Parameter Value Reference

Spectral type G5V Houk (1982)
Mv 5.11 ± 0.11 Masana et al. (2006)
B − V 0.694 Hipparcos catalog
V 8.786 ± 0.014 Hipparcos catalog
Mass (M�) 0.94 ± 0.10 This work
Radius (R�) 0.901 ± 0.056 This work
Luminosity (L�) 0.773 ± 0.085 This work
Distance (pc) 54.4 ± 2.7 van Leeuwen (2007)
V sin i (km s−1) 3.0 Nordstroem et al. (2004)
S 0.258 This work
log R′

HK −4.62 This work
Age (Gyr) <4.5 Holmberg et al. (2009)
[Fe/H] 0.06 Holmberg et al. (2009)
Teff (K) 5710 ± 81 This work
log g 4.502 ± 0.071 This work
Prot (days) 17.8 This work
Mbol,� 5.03 ± 0.12 Masana et al. (2006)

Wilson S index and found that it has a mean value of 0.258. We
also measured log R′

HK = −4.62. These values are similar to
S = 0.207 and log R′

HK = −4.80, as in Jenkins et al. (2008).

3. NEW RADIAL VELOCITY AND
PHOTOMETRIC OBSERVATIONS

3.1. Radial Velocities

The HIRES spectrometer (Vogt et al. 1994) of the Keck I
telescope was used for all the new RVs presented in this
paper. Doppler shifts were measured in the usual manner (Butler
et al. 2006) by placing a gaseous iodine absorption cell just
ahead of the spectrometer slit in the converging beam from
the telescope. This iodine cell superimposes a rich forest of
iodine lines on the stellar spectrum, providing a wavelength
calibration and proxy for the point-spread function (PSF) of
the spectrometer. The iodine cell is sealed and temperature
controlled to 50◦C ± 0.1◦C such that the column density of
iodine remains constant. For the Keck planet search program, we
operate the HIRES spectrometer at a spectral resolving power
R ≈ 70,000 and wavelength range of 3700–8000 Å, though
only the region 5000–6200 Å (with iodine lines) is used in
the present Doppler analysis. The iodine region is divided into
∼700 wavelength intervals of 2 Å each. Each interval produces
an independent measure of the wavelength, PSF, and Doppler
shift. The final measured velocity is the weighted mean of
the velocities of the individual intervals. All RVs have been
corrected to the solar system barycenter, but are not tied to any
absolute RV system. As such, they are “relative” RVs.

Table 2 lists the complete set of 86 relative RVs for
HD 207832, corrected to the solar system barycenter. We present
results using only the internal uncertainties. The median internal
uncertainty for our observations is 1.95 m s−1, the peak-to-peak
velocity variation is 95.84 m s−1, and the velocity scatter around
the mean RV is 21.29 m s−1. The internal uncertainties quoted
for all the RVs in this paper reflect only one term in the overall
error budget and result from a host of systematic errors such
as characterizing and determining the PSF, detector imperfec-
tions, optical aberrations, effects of undersampling the iodine
lines, etc. Two additional major sources of error are photon
statistics and stellar jitter. The latter, which varies substantially
from star to star, can be mitigated to some degree by selecting
magnetically inactive older stars and by time-averaging over the

Table 2
HIRES/Keck Radial Velocities for HD 207832

JD RV Uncertainty
(m s−1) (m s−1)

2453191.07306 1.23 2.52
2453198.10964 10.76 2.96
2453199.10969 10.20 2.71
2453200.02832 21.89 2.50
2453604.05288 −32.09 2.18
2453962.02939 −17.22 1.94
2453964.03012 −21.66 2.20
2453981.83958 1.37 1.91
2453983.88414 5.39 2.27
2454023.73787 10.94 2.14
2454249.06943 −9.15 2.08
2454250.11123 −24.57 2.11
2454256.08362 −6.89 1.89
2454279.05384 7.69 2.21
2454280.07780 14.81 2.87
2454304.98079 14.17 1.91
2454305.97931 17.08 1.86
2454306.98351 18.22 1.95
2454308.00756 10.08 2.32
2454309.97308 15.16 1.96
2454310.96397 13.10 1.97
2454311.96209 17.20 1.95
2454312.95811 18.61 1.88
2454313.95461 23.62 1.95
2454314.98918 30.46 2.03
2454319.05290 41.53 1.76
2454336.99854 27.88 1.48
2454339.83047 27.06 1.48
2454343.90031 8.14 1.74
2454399.76550 −28.65 2.18
2454428.72442 2.04 2.02
2454634.11007 22.74 1.99
2454635.02452 16.73 1.48
2454636.07870 13.52 1.87
2454637.12316 19.12 1.91
2454638.07365 22.29 1.97
2454639.08741 25.12 1.72
2454641.11196 39.66 2.04
2454642.07952 47.08 2.03
2454644.10800 37.76 2.01
2454667.05175 11.18 1.99
2454672.98097 8.41 1.89
2454674.92028 7.48 2.03
2454675.92382 4.18 1.55
2454687.01449 −6.67 1.97
2454702.06135 −13.54 1.85
2454704.01682 −6.23 1.89
2454805.78129 −5.17 2.05
2454820.76637 −0.29 2.32
2454821.73081 0.11 1.64
2454964.12223 4.93 2.09
2454984.08389 −12.31 2.06
2454985.11255 −14.74 2.02
2455015.01571 −16.25 2.01
2455022.11297 −48.76 2.02
2455024.10459 −36.02 1.95
2455025.10763 −35.17 1.96
2455050.98600 −38.79 1.74
2455052.04273 −36.58 1.88
2455054.05711 −47.74 1.95
2455143.85599 4.02 2.44
2455166.79983 −18.24 1.96
2455168.76488 −24.14 2.09
2455200.70599 −34.68 1.42
2455201.70283 −37.22 1.33
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Table 2
(Continued)

JD RV Uncertainty
(m s−1) (m s−1)

2455202.70257 −32.32 1.79
2455341.10738 −2.76 2.01
2455370.09190 −26.18 1.34
2455371.02144 −34.21 1.35
2455408.08145 −2.35 1.83
2455409.05312 −4.91 1.29
2455410.05776 −5.07 1.30
2455462.94628 9.74 0.99
2455548.69542 −6.54 1.27
2455549.69363 −12.33 1.28
2455720.05565 −8.89 1.30
2455721.10910 −5.59 1.35
2455750.03262 1.80 2.06
2455751.03252 5.33 1.59
2455824.90900 6.65 1.79
2455825.96501 −0.09 1.96
2455839.83583 −26.64 1.25
2455840.91258 −34.41 1.29
2455910.72389 0.00 1.87
2455911.69779 2.56 1.24
2455912.71141 5.28 1.35

star’s unresolved low-degree surface p-modes. For HD 207832,
the expected jitter is 4.22 m s−1 (Isaacson & Fischer 2010). This
is in accord with the modest level of activity suggested by the
quoted values of log R′

HK. All observations have been further
binned on 2 hr timescales.

Figure 1 shows the results. The top panel of this figure shows
the individual RV observations, and the middle panel shows the
weighted Lomb–Scargle (LS) periodogram of the full RV data
set (Gilliland & Baliunas 1987). In generating this periodogram,
we used only the internal uncertainties in the statistical weights
and did not include jitter. To examine the effect of jitter, we
added in quadrature 4.22 m s−1 to each internal uncertainty and
reproduced the periodogram. The results showed only negligible
differences.

The three horizontal lines in this figure and other comparable
plots represent, from top to bottom, the 0.1%, 1.0%, and 10.0%
false alarm probability (FAP) levels, respectively. The algorithm
for computing the LS periodogram is described in detail in
Section 13.8 of Press et al. (1992). To estimate our FAP levels,
we randomly assign (without replacement) an observed RV—or
residual RV when we consider the residuals for a fit—(with
its corresponding uncertainty) to each observing epoch. We
repeat this 105 times. For each synthetic RV (or residual RV)
set generated in this manner, we compute the weighted LS
periodogram. Our FAP estimates are then the fraction of these
periodograms in which the power in the tallest peak equals or
exceeds the power in the periodogram of the real RVs (or residual
RVs). We do this to circumvent potential problems associated
with the application of the FAP estimation method(s) in Press
et al. (1992), which are strictly applicable only in the case of
single, isolated signals in the presence of Gaussian noise with
known variance (Koen 1990). For the strong Keplerian signal
at P ∼ 162 days in the RV data set, we find a FAP < 10−5.
Finally, the lower panel of Figure 1 shows the power spectral
window. This spectral window indicates spurious power that
might be introduced into the data from the choice of sampling
times alone, and it can be used to aid in the identification of
aliased signals.

Figure 1. Radial velocity data and periodograms for HD 207832. Top panel: rel-
ative HIRES/Keck radial velocity data. Middle panel: weighted Lomb–Scargle
periodogram of the radial velocity data. Bottom panel: power spectral window.

3.2. Keplerian Solution

Table 3 summarizes a one-planet Keplerian fit for HD 207832.
Orbital fits were derived using the Systemic Console (Meschiari
et al. 2009).6 The errors on each parameter are estimated using
the bootstrap technique with 1000 realizations of the RV data
sets. We fit all the realizations, and the uncertainties in the best-
fit parameters are determined by the ranges in each parameter
containing 68.2% of the distributions of the fitted values. For

6 Downloadable at http://www.oklo.org
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Figure 2. One-planet Keplerian solution and residuals periodogram for
HD 207832. Top panel: phased Keplerian fit. Bottom panel: periodogram of
the residuals to the one-planet best-fit solution.

Table 3
Keplerian Orbital Solution for the One-planet Fit

Parameter HD 207832 b

P (days) 161.82+0.73
−1.69

e 0.18+0.15
−0.07

K (m s−1) 24.30+2.96
−0.94

� (◦) 146.1+21.1
−115.1

MA (◦) 231.2+78.4
−28.9

M sin i (MJup) 0.62+0.06
−0.04

a (AU) 0.569+0.002
−0.005

Epoch (JD) 2453191.07306

χ2
ν 43.99

RMS (m s−1) 12.33

each planet, we list best-fit period (P), eccentricity (e), semi-
amplitude (K), longitude of pericenter (� ), mean-anomaly
(MA), minimum mass (M sin i), and semimajor axis (a).

The dominant peak in the periodogram of the RVs is well fitted
with a Keplerian orbit of period 161.82 days and semi-amplitude
K = 21.30 m s−1 (top panel of Figure 2). Together with the
assumed stellar mass of 0.94 M�, this amplitude suggests a
planet with a minimum mass of M sin i = 0.62 MJup. The best-
fit orbit for this planet is moderately eccentric (e ≈ 0.18). This
one-planet fit achieves χ2

ν = 43.99, with an RMS of 12.33 m s−1.

Table 4
Keplerian Orbital Solution for Two-planet Fit

Parameter HD 207832 b HD 207832 c

P (days) 161.97+0.97
−0.78 1155.7+71.9

−37.0

e 0.13+0.18
−0.05 0.27+0.22

−0.10

K (m s−1) 22.1+2.7
−1.3 15.3+5.2

−1.0

� (◦) 130.8+23.9
−83.4 121.6+32.4

−76.5

MA (◦) 243.3+83.2
−30.1 211.9+114.4

−0.0

M sin i (MJup) 0.56+0.06
−0.03 0.73+0.18

−0.05

a (AU) 0.570+0.002
−0.002 2.112+0.087

−0.045

Epoch (JD) 2453191.07306

χ2
ν 22.93

RMS (m s−1) 8.43

If we add in the estimated jitter and perform a new fit, the only
significant difference will be the reduction of χ2

ν to 8.22. Within
the uncertainties, the two fits were indistinguishable.

The bottom panel of Figure 2 shows the periodogram of
the residuals to the single-planet fit. The dominant peak at
P = 1111.2 days with a FAP of 2.3 × 10−4 is indicative of
a secure detection of an additional planet. Again, we find that
the addition of the expected jitter to the internal uncertainties
has a minor effect on this periodogram. The peak near 30 days
is an alias of the 1111 day peak. In fact, the 30, 150, and
1111 day peaks in the one-planet residuals periodogram are
all inter-related via the lunar synodic and 1/2 year peak in the
power spectral window of Figure 1 (bottom panel).

Our best combined two-planet fit indicates a second planet
with P = 1155.70 days, K = 15.34 m s−1, and a minimum
mass of M sin i = 0.73 MJup (Table 4). The best-fit orbital
model of the second planet suggests a moderate eccentricity
(e ≈ 0.27). With this revised fit, we obtain χ2

ν = 22.93 and
an RMS of the residuals of 8.43 m s−1. The F-test of the two-
planet fit versus the one-planet fit gives a probability of 5×10−4

(based on the difference in RMS values7) that the two-planet fit
is not significantly different from the one-planet fit, indicating
further evidence in support of the two-planet model. Similar
to the case of the one-planet fit, the only significant result of
adding in the expected jitter is that for this two-planet model
χ2

ν will reduced to 4.05. As with the one-planet model, within
the uncertainties, the fitted parameters for fits with and without
jitter have negligible differences.

Figure 3 shows phase-folded RVs for the two-planet fit. The
top panel corresponds to the case where the period of the inner
planet has been used and the effect of the outer planet has been
subtracted. Similarly, the middle panel is for the case where the
period of the outer planet was used and the effect of the inner
planet was subtracted. The bottom panel of this figure shows the
periodogram of the residuals of the best-fit solution. The FAP
of the tallest peak is ∼50%. The corresponding result when we
added in the expected jitter was similar, although the period of
the tallest peak was slightly different. The current data set thus
offers no compelling evidence for additional planets.8

7 This value reduces drastically to 3 × 10−10 when calculated based on the
difference in χ2

ν .
8 As a check of the reliability of our results, we calculated FAPs for our one-
and two-planet fits as well as for the most prominent signal in the residuals,
using the formalism presented by Baluev (2008). In agreement with our
previous calculations, we found that for the one-planet fit, FAP < 10−16, for
the two-planet fit, it is <10−5, and for the residuals, it is <0.5. The
periodograms for each case were equivalent to those shown in Figures 1–3,
confirming the secure detection of the two planets.
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Figure 3. Keplerian solutions and residuals periodogram for HD 207832. Top
panel: phased Keplerian fit in a system where the period of the inner planet
has been used and the effect of the outer planet has been subtracted. Middle
panel: phased Keplerian fit in a system where the period of the outer planet has
been used and the effect of the inner planet has been subtracted. Bottom panel:
periodogram of the residuals to the two-planet best-fit solution.

The periodograms of the residuals of the two-planet fits
(with and without the addition of the expected jitter) contain
peaks (of little significance) with periods ranging from 18
to 22 days. Also, the analysis of the Mt. Wilson S index
indicates a periodicity of ∼19 days. These values are in rough
agreement with the photometric period discussed in the next

Table 5
Summary of Photometric Observations for HD 207832

Observing Nobs Date Range Sigma Seasonal Mean
Season (HJD − 2,400,000) (mag) (mag)
(1) (2) (3) (4) (5)

2007 50 54370–54418 0.00436 1.80516 ± 0.00062
2008 111 54728–54801 0.00379 1.80205 ± 0.00036
2009 82 55092–55156 0.00386 1.80377 ± 0.00043
2010 67 55463–55532 0.00315 1.80778 ± 0.00038

section. Inspection of the individual seasons of the S, RV,
and photometric observations indicates that there is significant
variation in the peak period (and its associated power) in the
periodograms of these quantities. These weak periodicities may
be tied to the rotation period of the star through the presence
of stellar spots and chromospheric activity. The lack of a strong
coherent signal over the full time spans of the observations
and the relatively large power levels in the periodogram of the
two-planet residuals suggest the presence of additional (non-
Gaussian) noise. Since the FAPs for the most prominent signals
in the residuals of the two-planet fit are ∼50% and there
is evidence for additional noise which does not show strong
coherence over the time span of the observations, we do not
attempt to fit for the stellar rotation (and any other potential
remaining signals).

3.3. APT Photometry

In addition to the Keck RVs, we obtained Strömgren b
and y photometric observations with the T12 0.80 m APT at
Fairborn Observatory in Arizona. The T12 APT uses a two-
channel precision photometer with two EMI 9124QB bi-alkali
photomultiplier tubes to make simultaneous measurements in
the two passbands. We programed the APT to make differ-
ential brightness measurements of HD 207832 (V = 8.78,
B − V = 0.69, G5 V) with respect to three comparison stars:
HD 207760 (V = 6.19, B − V = 0.37, F0 V), HD 206797
(V = 7.35, B − V = 0.40, F2 III), and HD 208483 (V = 7.64,
B − V = 0.48, F4 V). A detailed description of the automatic
telescope, precision photometer, observing procedures, data re-
duction, calibration, and photometric precision can be found in
Henry (1999). The typical precision of a single observation is
approximately 0.0015 mag on good nights.

The T12 APT acquired 310 differential observations of
HD 207832 during the 2007–2010 observing seasons. The
observing seasons are short, two or three months, because the
star’s declination is −26◦, making it difficult to observe from
Arizona. Also, the star comes to opposition in mid-August when
the Fairborn APT site is forced to shut down for two months by
the annual monsoons. To improve the photometric precision
of these relatively high-airmass observations, we combined
our differential b and y observations into a single (b + y)/2
passband. We also computed all differential magnitudes using
the composite mean brightness of the three comparison stars to
average out any subtle light variations in the comparisons.

The resulting differential magnitudes are plotted in the top
panel of Figure 4 and are summarized in Table 5. Even though
the observing seasons are short, it is clear from both the table
and the figure that the mean brightness of HD 207832 varies
over a range of ∼0.005 mag. In contrast, the composite mean
of the three comparison stars varies over a total range of only
0.0010 mag and has a standard deviation from the grand mean of
only 0.00051 mag. This demonstrates the long-term stability of

5
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Figure 4. Top panel: the 310 photometric observations of HD 207832 in the
(b + y)/2 passband, acquired with the T12 0.8 m APT during the 2007, 2008,
2009, and 2010 observing seasons. Second panel: the 2007 observing season,
set off with vertical bars in the top panel, showing the most coherent brightness
variability due to cool starspots carried across the disk of the star by its rotation.
Third panel: frequency spectrum of the observations in the second panel giving
a best period of 17.8 ± 0.5 days. Bottom panel: plot of the data from the second
panel, phased with the star’s 17.8 day rotation period. Results reveal coherent
variability with a peak-to-peak amplitude of 0.011 mag.

our photometric calibrations and the reliability of the measured
variation in the yearly mean brightness of HD 207832. The low-
level photometric variability in HD 207832 results from subtle
changes in the star’s magnetic activity and is in line with other
solar-type stars of similar age (see, e.g., Figure 11 of Hall et al.
2009).

The presence of photospheric spots in solar-type stars allows
the possibility of the direct determination of stellar rotation
periods due to the rotational modulation in the visibility of the
spots and the consequent variability in the star’s brightness (see,
e.g., Gaidos et al. 2000; Henry et al. 1995). Queloz et al. (2001)
and Paulson et al. (2004) have demonstrated how starspots
can result in periodic RV variations that mimic the presence
of planetary companions. We performed periodogram analyses
of the individual four seasons of our HD 207832 photometry.
Coherent brightness variability with a strong rotation signal was
found only in the first observing season, plotted in the second
panel of Figure 4. We note from Column 4 of Table 5 that
the 2007 season exhibited the largest night-to-night brightness
variability, indicating a slightly larger degree of asymmetry
in the spot distribution and so permitted the determination of
the star’s rotation period. The frequency spectrum of these
observations in the third panel of Figure 4 gives a period of

17.8 ± 0.5 days. Much weaker signals of 20, 21, and 24 days
were seen in 2008 and 2009 seasons, so we take 17.8 days to be
the rotation period of HD 207832. This period is consistent with
the star’s V sin i = 3 km s−1 and log R′

HK = −4.62. The 2007
season data are phased with the rotation period in the bottom
panel of Figure 4. The best-fit sine curve, also plotted in the
bottom panel, has a peak-to-peak amplitude of 0.011 mag.

4. CONCLUDING REMARKS

The measurements of the RVs of HD 207832 suggest that
two Jovian-type planets exist in orbit around this star. Given
the moderate eccentricities of these two planets and the small
semimajor axis of the inner body, it would be interesting to
speculate on the origin of these objects and the possibility of the
existence of additional smaller bodies in this system.

As HD 207832 is a solar-type star with a mass only slightly
smaller than that of the Sun, conventional wisdom holds that
any Jovian-type planets associated with this star should have
formed at large distances, beyond the protoplanetary “ice line.”
This picture suggests that planet b and (possibly) planet c were
formed in regions well separated from their current orbits and
reached their current locations either via migration, interaction
with other planetary bodies, or a combination of both.

Given that HD 207832 is a Sun-like star, it would not be
unrealistic to assume that in the past this star was surrounded by
a disk of planetesimals and planetary embryos. The migration of
the two planets of this system (in particular planet b) could have
affected the dynamics of these protoplanetary bodies, scattering
them out of the system and altering their accretion to larger (e.g.,
terrestrial-class) objects. Within the confines of this paradigm, it
would be moderately unexpected to find a small planet orbiting
in the region between planets b and c. Such an object, however,
may be able to maintain stability in the region interior to planet
b. As argued by Zhou et al. (2005), Fogg & Nelson (2005, 2006,
2007a, 2007b, 2009), Raymond et al. (2008), and many other
researchers, small planets might in fact form and survive inside
the orbit of a migrating giant body.

To examine the possibility of the existence of terrestrial-class
objects in the region between the two planets and interior to
the orbit of planet b, we considered each planet to have an
influence zone extending from a(1−e)−3RH to a(1+e)+3RH,
where RH is the planet’s Hill radius. An additional object will
be outside these influence zones if its orbit is larger than 3 AU,
between 0.75 and 1.25 AU, or smaller than 0.4 AU. We placed a
hypothetical Earth-mass planet at different distances in the two
regions nearer to the star and integrated the four-body system of
the star, planets b and c, and the Earth-mass body for 1 Myr and
for different values of the hypothetical planet’s semimajor axis.
We assumed that the Earth-mass planet was initially in a circular
orbit and varied its initial semimajor axis between 0.75 AU
and 1.25 AU, and between 0.05 and 0.4 AU in increments of
0.01 AU. Results indicated that, between the two planets, in
the region 0.75–1.25 AU, the orbits of all hypothetical bodies
became unstable in less than 1 Myr. The orbits of the objects
between 0.3 and 0.4 AU also became unstable in a few hundred
thousand years. However, objects between 0.05 and 0.3 AU
maintained their orbits for the duration of the integration.

Although these results indicate that a low-mass planet may
be stable in a small region interior to the orbit of HD 207832
b, it is not possible, based on the current observational data,
to make a definite conclusion on the actual existence of this
object. As mentioned before, the periodogram of the residuals
of our best-fit model shows no significant signal, implying that

6



The Astrophysical Journal, 756:91 (7pp), 2012 September 1 Haghighipour et al.

the current observational data offer no significant evidence for
other planets in this system.
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