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Mapping QTLs for drought tolerance in a SEA 5 x AND 277 common bean
cross with SSRs and SNP markers

Boris Briñez1, Juliana Morini Küpper Cardoso Perseguini1,2, Juliana Santa Rosa1, Denis Bassi1, João
Guilherme Ribeiro Gonçalves3, Caléo Almeida1, Jean Fausto de Carvalho Paulino4, Matthew Ward Blair5,
Alisson Fernando Chioratto3, Sérgio Augusto Morais Carbonell3, Paula Arielle Mendes Ribeiro Valdisser5,
Rosana Pereira Vianello6 and Luciana Lasry Benchimol-Reis1
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5Department of Agriculture and Natural Sciences, Tennessee State University, Nashville, TN, USA.
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Abstract

The common bean is characterized by high sensitivity to drought and low productivity. Breeding for drought resis-
tance in this species involves genes of different genetic groups. In this work, we used a SEA 5 x AND 277 cross to
map quantitative trait loci associated with drought tolerance in order to assess the factors that determine the magni-
tude of drought response in common beans. A total of 438 polymorphic markers were used to genotype the F8 map-
ping population. Phenotyping was done in two greenhouses, one used to simulate drought and the other to simulate
irrigated conditions. Fourteen traits associated with drought tolerance were measured to identify the quantitative trait
loci (QTLs). The map was constructed with 331 markers that covered all 11 chromosomes and had a total length of
1515 cM. Twenty-two QTLs were discovered for chlorophyll, leaf and stem fresh biomass, leaf biomass dry weight,
leaf temperature, number of pods per plant, number of seeds per plant, seed weight, days to flowering, dry pod
weight and total yield under well-watered and drought (stress) conditions. All the QTLs detected under drought con-
ditions showed positive effects of the SEA 5 allele. This study provides a better understanding of the genetic inheri-
tance of drought tolerance in common bean.

Keywords: abiotic stress, interpopulation gene-pool, molecular markers, QTL mapping, water deficit.
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Introduction

The common bean (Phaseolus vulgaris L.) is an an-
nual grain legume crop with important human consumption
worldwide (Broughton et al., 2003). Drought stress is a se-
rious agronomic problem that contributes to severe yield
losses worldwide (Sabadin et al., 2012) and affects 60% of
bean production, especially in Africa where this effect is
particularly severe (Asfaw et al., 2013). Important bean
producing areas that already suffer frequent droughts, such
as Mexico, Central America, southern Africa and north-
eastern Brazil, are likely to receive even less average rain-
fall in the future because of climate change (Beebe et al.,
2011).

A broad understanding of the physiology of drought
response is key to identifying useful selection criteria in ad-
dition to yield per se. The optimal plant response for deal-
ing with moisture deficit will vary depending upon the
pattern of drought (Cortés et al., 2013). Four patterns of
drought have been defined: late initiation of rains, early
cessation of rains or terminal drought, intermittent drought,
or low rainfall throughout the season (Levitt, 1972).

Common beans of the Durango race germplasm
(prostrate bush types with medium-sized seeds from the dry
northern highlands of Mexico) reportedly possess the high-
est levels of drought resistance and have been used to de-
velop drought resistant bean cultivars in the Middle
American gene pool (Singh et al., 2001; Singh, 2007). Ac-
cording to Mukeshimana et al. (2014), combining the
germplasm of the races Durango and Mesoamerica (small-
seeded types, mostly bush habits, from lowland Central
America and Mexico; Singh et al., 1991) has provided a
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consistent source of improved drought resistance for tropi-
cal environments. Singh et al. (2001) described the SEA 5
line as a drought tolerant cultivar derived from interracial
crosses between the Mesoamerican and Durango races; one
of the parents originating the SEA 5 line was the cultivar
BAT 477.

Genetic and physiological mechanisms related to the
responses of plants to water stress are important for the se-
lection of more drought-tolerant plants. In general, drought
resistance mechanisms include drought escape, drought
avoidance and drought tolerance (Levitt, 1972). Drought
escape allows plants to accelerate their cell cycle with early
flowering and maturity, and rapidly relocates metabolites
to seed production and away from leaves and shoots.
Drought avoidance is the ability to maintain high tissue wa-
ter potential through increased root depth, a reduction in
hydraulic conductance, radiation absorption reduction in
leaves, a reduction in water-loss area, reduced absorption
of radiation by leaf movement, and reduced evaporation
surface (leaf area). Drought tolerance is the ability of plants
to resist the stress by adjusting cell osmosis, plasticity and
size (Levitt, 1972).

Many traits influence tolerance to drought stress, in-
cluding rooting pattern, the ability to partition a greater pro-
portion of carbohydrates to seeds under stress, the capacity
to set pods and fill seeds under stress, reduced stomatal con-
ductance and leaf area, and the ability to maintain turgor
through osmotic adjustment (Singh, 2007).

Breeding for drought tolerance is complex because of
the number of traits involved, quantitative inheritance and
environmental influence (Mir et al., 2012). A large amount
of data has contributed to our understanding of the impact
of drought on the common bean (Asfaw and Blair, 2012;
Blair et al., 2012; Mukeshimana et al., 2014). However, the
identification of major-effect QTLs with stable expression
across different stress environments is needed to facilitate
marker assisted selection (MAS) for drought tolerance in
the common bean.

Molecular markers are powerful tools for analyzing
the genetic control of complex traits such as drought toler-
ance (Mir et al., 2012). Asfaw and Blair (2012) used ran-
dom amplified polymorphic DNA, amplified fragment
length polymorphism and simple sequence repeats markers
(SSRs) to map a Mesoamerican intra-gene pool cross of
drought-susceptible DOR364 and drought-tolerant BAT
477, and detected a yield QTL on Pv08 and a stem carbohy-
drate QTL on Pv05.

Diversity analysis using intron-based SNPs revealed
different patterns of diversity compared to that reported by
Blair et al. (2009a,b) using SSRs. Mukeshimana et al.

(2014) identified 14 QTLs for performance under drought
in an inter-gene pool recombinant inbred line (RIL) popula-
tion from a cross of the drought-tolerant line SEA 5 and
CAL 96 cultivar; QTLs associated with yield components
overlapped, especially on Pv03, Pv07, and Pv09. Villordo-

Pineda et al. (2016) observed 83 SNPs that were
significantly associated with flowering time, physiological
maturity, reproductive period, seed and total biomass, reuse
index, seed yield, weight of 100 seeds, and harvest index in
three cultivation cycles.

The goal of this study was to identify QTLs associ-
ated with physiological and yield components under
drought and irrigation conditions based on an anchored
linkage map obtained from a RIL population derived from a
contrasting inter-gene pool cross between drought-tolerant
(SEA 5 – Mesoamerican gene pool) and drought-suscep-
tible (AND 277 – Andean gene pool) parents.

Material and Methods

Plant material

The population used in this study was a set of 107 re-
combinant inbred lines (RILs) from the cross SEA 5 x AND
277 created at the International Center for Tropical Agri-
culture (CIAT, Cali, Colombia). The population was propa-
gated until the F8 generation using the single seed descent
(SSD) method. The drought-tolerant dry bean line SEA 5
was also developed at CIAT (Singh et al., 2001; Terán and
Singh, 2002) and is considered superior to BAT 477
(Pérez-Vega et al., 2011). SEA 5 was developed from the
interracial double-cross population TR 7790 = BAT
477/‘San Cristobal 83’//‘Guanajuato 31’/‘Rio Tibagi’.
BAT 477 is a cream-colored, small-seeded (< 25 g/100
seeds) breeding line developed at CIAT; BAT 477 has an
indeterminate prostrate Type III growth habit and is highly
tolerant to charcoal root rot [caused byMacrophomina

phaseolina(Tassi) Goid]. San Cristobal 83 is a red mottled,
small-seeded landrace with a Type III growth habit from
the Dominican Republic. Guanajuato 31 is a beige-colored,
medium-seeded (25-40 g/100 seeds) landrace of Type III
growth habit from the semi-arid central highlands of Mex-
ico. This line has high yields, a high harvest index and is re-
sistant to anthracnose [caused by Colletotrichum

lindemuthianum (Sacc. & Magn.) Lams.-Scrib.]. Crosses
involving Guanajuato 31 indicate that it possesses resis-
tance genes to C. lindemuthianum races 6, 31, 38, 39 and
357 (Rodríguez-Soárez et al., 2007) and to race 83 (Alza-
te-Marin et al., 2009). Rio Tibagi has small black seeds and
an indeterminate upright Type II growth habit; this is a pop-
ular cultivar in central and southern Brazil. BAT 477, San
Cristobal 83 and Rio Tibagi belong to the Mesoamerica
race, and Guanajuato 31 belongs to the Durango race. All
four genotypes have some level of tolerance to drought, al-
though Rio Tibagi has been classified as susceptible
(Singh, 1995). AND 277 belongs to the Nueva Granada
race and is of the Andean genepool (Blair et al., 2009a).
This advanced line was derived from the complex cross
[Cargabello x (Pompadour Checa x Línea 17) x (Línea 17 x
Red Kloud)] and gamete selection. AND 277 is known to
carry the Co-14 (Arruda et al., 2008; Alzate-Marin et al.,
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2003) and Phg-1 (Carvalho et al., 1998) genes that confer
resistance to anthracnose (Colletotrichum

lindemuthianum) and angular leaf spot (Pseudocercospora

griseola) diseases, respectively, but is susceptible to
drought.

Phenotyping for drought tolerance

The experiment was done from January to April 2012
at the Agronomic Institute (IAC, Campinas, SP, Brazil), lo-
cated at 22°52’40” latitude south and 47°04’72” longitude
west and an altitude of 685 m. Two greenhouses were set up
for the experiment. The first one (water stress) was covered
with shade cloth as a sun screen and polyethylene plastic to
prevent the entry of water during the experiment, while the
second one (well water) was covered only with shade cloth.

Each greenhouse was filled with 428 plastic pots
linked to an individual irrigation system that allowed con-
trol of the amount of incoming water and the drought stress
generated in the experiment. The pots were filled with 12
kg of a soil, manure and sand mixture (in a 3:1:1 ratio).
Since pot size can affect plant growth and performance
(Pieruschka and Poorter, 2012), we used pots with a soil ca-
pacity of 12 kg to minimize the influence of pot size. The
soil was adjusted to a neutral pH with lime and watered be-
fore filling the pots. The experimental design consisted of
completely randomized blocks with four replicates. After
one week of letting the soil settle, the pots were fertilized
using chemically-formulated fertilizer (NPK 8-18-16) that
was applied directly to the soil. The total amount of each
nutrient was equivalent to 1.5 g of N, 6.0 g of P2O5 and 3.5
g of K2O per pot.

Soil moisture levels in the pots were measured with
30 watermark sensors (granular matrix sensors) that were
randomly installed at soil depths of 20 cm in control and
drought stress pots. Before planting, the seeds were rinsed
for 1 min in 5% (v/v) NaClO, washed in distilled water
and germinated in a Biological Oxygen Demand (BOD)
incubator for 72 h at 25 °C. Three seeds of each genotype
were planted per pot. During the growing season, irriga-
tions were provided twice a day for a total volume of 400
mL. Every two days, soil water tension was measured,
along with the leaf temperature of the plants in the pots con-
taining the sensors, as well as the ambient temperature and
relative humidity of each environment. Days to flowering
were recorded every day and the mean flowering date was
calculated for each genotype.

After 20 days of water deficit, one plant of each geno-
type and each replication was collected for phenotypic
analysis; the others were allowed to grow until the end of
the crop cycle to measure yield. At this point, leaf tempera-
ture was measured with an infrared thermograph (Telatemp
model AG-42D, Telatemp, CA, USA), after which the
plants were cut at the soil surface and separated into leaves
and stems. The chlorophyll present in the leaves was mea-
sured with a non-destructive, hand-held SPAD-502 chloro-

phyll meter (Minolta Camera Co., Ltd., Japan). Leaf area
was determined using a leaf area meter (LICOR model
LI-3000). For these same plants, the fresh stem and leaf
weights were measured using an analytical balance (BEL
Engineering, Milan, Italy) to determine biomass partition-
ing. Plant parts were placed in separate paper bags and
dried in an oven at 60 °C for 48 h after which the stem and
leaf biomass dry weights were determined.

The physiological and morphological responses to
drought were measured 33 days after planting (DAP), when
the water-stressed greenhouse plants reached a mean value
of 160 kPa of soil water potential. After the physiological
and morphological evaluations, the remaining plants were
evaluated at physiological maturity to determine their pro-
ductivity. In general, the plants were harvested after ap-
proximately three months, at which point the number of
pods at harvest, number of seeds per plant and number of
seeds per pod were determined. In addition, yield and total
seed weight and dry pod weight were estimated. The
drought intensity index (DII) was calculated as 1� Xds

Xns
,

where Xds and Xns are the mean seed yield of all genotypes
under drought stress (ds) and no stress (ns) treatments.

DNA extraction and genotyping

DNA was extracted from 300 mg of powdered
lyophilized young leaves from the parents and all the RILs
by the CTAB method. DNA concentration was measured in
a NanoDrop 2000 (Thermo Scientific) and diluted in Tris-
EDTA (TE) buffer (10 mM Tris-HCl, 1 mM EDTA, pH
8.0) to a final concentration of 50 ng/�L and stored at 4 °C.

Microsatellite amplification and analysis

For microsatellite screening, 594 SSRs were tested
for polymorphisms among the SEA 5 and AND 277 lines.
These SSRs were previously published by Blair et al.

(2006, 2008, 2009a), Benchimol et al. (2007), Hanai et al.

(2007) and Campos et al. (2011). The amplification reac-
tions included 30 ng of DNA, 1 U of Taq DNA polymerase,
1.5 mM MgCl2, 0.15 mM of each dNTP, 0.8 pmol/mL of
each primer (forward and reverse), 10 mM Tris-HCl and
50 mM KCl in a final reaction volume of 15 �L. The fol-
lowing conditions were used for amplification: 1 min at 94
°C, 30 cycles of 1 min at 94 °C, 1 min at the specific anneal-
ing temperature for each SSR, and 1 min at 72 °C, with a fi-
nal extension of 5 min at 72 °C. The PCR products were
visualized on a 3% agarose gel and stained with 1X GelRed
(Biotium, Inc. Hayward, CA, USA). After checking the
PCR amplification products, they were separated in a 6%
denaturing polyacrylamide gel and visualized using silver
staining. Molecular mass standards (10-bp and 100-bp lad-
ders; Invitrogen) were included in the runs.

Single nucleotide polymorphism (SNP) analysis

Genotyping for the 384 SNPs was done using the
Vera Code® BeadXpress platform (Illumina) at the Bio-
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technology Laboratory of Embrapa Arroz e Feijão (Goia-
nia, GO, Brazil). A set of 384 SNP markers, validated
through Prelim file (https://icom.illumina.com/Cus-
tom/UploadOpaPrelim/) previously identified for P.

vulgaris (Müller et al., 2015) and derivatives of polymor-
phism between the lines BAT 477 of Mesoamerican origin
and Jalo EEP558 of Andean origin were selected to com-
pose the Oligo Pool Assay (OPA) SNP markers.

For the SNP detection procedure on the BeadXpress
platform, three oligonucleotides were used, two allele-
specific (ASO) primers for each of the variations of the
same specific SNP locus and a third primer (LSO) binding
to the 3’ region fragment DNA containing the SNP target.
After hybridization, the procedure consisted of extending
the regions between the ASO and LSO, followed by melt-
ing from a ligase enzyme, thus forming a single allele-
specific fragment. This fragment was subsequently ampli-
fied using the enzyme Titanium Taq DNA polymerase
(Clontech Laboratories Inc., Palo Alto, CA, USA) and
primers complementary to the ASO region were labeled
with Cy3 and Cy5 fluorescence.

Finally, the PCR products were hybridized with the
complementary region of LSO strings present on the sur-
face of the holographic beads. SNP genotyping was done
using the program Genome Studio version 1.8.4, (Illumina,
USA), with call rate values ranging from 0.80 to 0.90 and �

0.26 for GenTrain grouping of SNPs. Clustering (grouping)
to call alleles for each SNP was done a priori in an auto-
mated manner based on the intensity of the signals from
Cy3 and Cy5. These signals were grouped into three classes
of genotypes representing homozygous (AA and BB) and
heterozygous (AB) alleles. For data analysis, the groups
were adjusted individually and manually by determining
the best clusters based on the parental profile.

Linkage mapping and QTL identification

Segregation analyses the SNP and SSR scoring of the
105 recombinant inbred lines and the SEA 5 and AND 277
parents were done using the chi-square test (X2), assuming
1:1 segregation ratios, with Bonferroni corrections. The ge-
netic map was constructed with OneMap software version
2.0-1 (Margarido et al., 2007) using the multipoint ap-
proaches and hidden Markov models for analysis in the RIL
population. Briefly, after identifying the redundant markers
and segregation distortion, the recombination fractions
were estimated between each pair of markers using the
two-point function. The markers were then assigned to the
chromosomes using a LOD threshold of 3.0 and maximum
genetic distance of 37.5 cM in conjunction with the
Kosambi (1944) map function and the make.seq function.
For the remaining markers, the try.seq function was used.

The positioning of the markers was refined using
make.seq and map functions consecutively. To help decide
on the position of each marker inserted in a specific linkage
group, the rf.graph.table and draw.try=TRUE function

were used to display the heat map. The nomenclature of the
chromosomes and physical positions were identified by
comparisons through sequence similarity analysis using
BLASTN against the P. vulgaris G19833 Andean genome
(https://phytozome.jgi.doe.gov/pz/por-
tal.html#!info?alias=Org_Pvulgaris) and the integrated ge-
netic map for the common bean based on microsatellite
mapping described by Blair et al. (2011) and Campos et al.

(2011).

Normality of the phenotypic data of the least square
means (LSMeans) distribution was assessed based on the
skewness, kurtosis and Shapiro-Wilk values. The Box-Cox
transformation was applied and the appropriate model for
normalizing the data of each trait was selected using the
lambda (�) parameter (Osborne, 2010).

Quantitative trait loci identification was done using
QTL Cartographer v. 1.17 (Basten et al., 2005) with com-
posite interval mapping (CIM) analysis. The likelihood ra-
tio test (LRT) was used to check for the presence of QTL at
1 cM walkspeed and 10 cM window size. The coefficient of
determination was calculated for each interval separately
(R2) and for each interval given the background markers
(TR2) to determine the phenotypic variance explained by a
single QTL. LOD values were calculated using the formula
LOD = 0.2172 * LRT. Multiple linear regression for each
chromosomal position was applied at the 5% significance
level to obtain the cofactors used in the analysis. Threshold
values were identified for each trait based on 1000 permu-
tations and represented by graphs using Excel 2010.

Statistical analysis

Analysis of variance (ANOVA) and the Generalized
Linear Models (GLM) procedure were to assess the perfor-
mances of the RILs and of each trait evaluated. All data and
statistical analyses were done using the software SAS v.8.2
(SAS Institute, Cary, NC, USA). A value of p < 0.05 indi-
cated significance.

Results

Marker characteristics

Among the 594 microsatellite markers screened in the
parents, 150 (25%) were polymorphic for the population
and 80 SSRs (53%) were mapped. SNP profiling produced
288 polymorphic markers, 251 of which were used in ge-
netic mapping. The linkage map was constructed with a to-
tal of 331 markers that segregated among the population
and covered all 11 bean chromosomes, with a total length of
1515.2 cM. All markers were distributed across the bean
genome, with an average density of 4.5 cM. The size of the
chromosomes ranged from 63.1 cM (Pv 10) to 221.2 cM
(Pv 1, Table 1). The highest saturation was found for Pv 3,
with 40 markers, including 30 SNPs and 10 SSRs.

816 Briñez et al.



Field conditions

The well-watered greenhouse or control treatment
was kept at 80% field capacity throughout the experiment,
with an average temperature of 34 °C and 52% relative hu-
midity. The water-stressed greenhouse was under terminal
stress conditions in the vegetative phase (V3/V4) and had
an average temperature of 36.4 °C and relative humidity of
42.4%. Humidity was lower in the stressed greenhouse and
leaf temperatures showed almost the same pattern, with
higher temperatures in the stressed greenhouse (Figure 1).

Descriptive statistics and analysis of variance of the
morphological response patterns related to drought toler-
ance detected significant differences among the parents and
RILs for most of the traits (Tables 2 and S1). In the well-
watered greenhouse, the parental lines, SEA 5 and AND
277, differed in leaf dry biomass, leaf temperature, days to
flowering, number of pods, number of seeds per pod, yield,
number of seeds, seed weight and pod weight. Among the

RILs, all the traits were significant and showed a normal
distribution (Figure S1). The two parents were similar in
terms of chlorophyll, leaf area, leaf fresh biomass, stem
fresh biomass and stem dry biomass. Heritability was lower
for pod weight (0.28) and higher for leaf fresh biomass
(0.93).

In contrast, in the water-stressed greenhouse, the pa-
rental lines differed in leaf area, leaf fresh biomass, leaf
biomass, dry weight, leaf temperature, days to flowering,
number of pods, number of seeds per pod, yield, number of
seeds, seed weight and pod weight. Among the RILs, leaf
fresh biomass and leaf biomass dry weight were not signifi-
cant traits. Heritability was lower for leaf biomass dry
weight (0.12) and higher for yield (0.95).

In the well-watered treatment, the mean yield of all
the genotypes was 2.84 g/plant, and 1.97 g/plant in the
treatment under drought stress. This result showed a 30%
reduction in grain yield due to drought, calculated using the

QTLs for drought tolerance in beans 817

Table 1 - Distribution of SSRs and SNPs mapped in the 11 chromosomes of the common bean genetic map from the AND 277 x SEA 5 population.

Linkage group (Pv) SSR SNP No. of linkage loci Linkage length (cM) Average distance (cM)

1 10 26 36 221.2 6.1

2 11 21 32 161.4 5

3 10 30 40 159.4 3.9

4 5 18 23 128.4 5.5

5 5 22 27 147.2 5.4

6 8 19 27 148.3 5.4

7 8 22 30 179.6 5.9

8 7 22 29 86.7 2.9

9 7 17 24 112.4 4.6

10 5 23 28 63.1 2.2

11 4 31 35 107.5 3

Total 80 251 331 1515.2 4.5

cM – CentiMorgan, SNP – single nucleotide polymorphism, SSR – simple sequence repeat.

Figure 1 - Environmental parameters and soil matrix potential measured every two days during the first 60 days after planting. (A) Leaf temperature and
soil water tension, (B) Greenhouse humidity and temperature.



drought intensity index. Parental means were significantly
different, except for leaf fresh and dry biomass.

QTL mapping

Of 22 QTLs identified in the experiment, eight were
under drought conditions and 12 under irrigation condi-
tions (Tables 3 and 4, Figure 2). Dry pod weight was de-
tected only under drought treatment and explained 17% of
the phenotypic variance with a negative allele for the QTL,
indicating that SEA 5 contributed to this trait, with an LOD
of 3.48 and a BAR3100 marker located within the QTL
(Table 4). The QTLs were detected in both conditions but
appeared on different chromosomes (Figure 2). The great-
est amount of phenotypic variance associated with drought
tolerance was detected for the chlorophyll QTL, with a co-
efficient of determination (R2) of 32.8%. However, this
trait was also detected in the irrigated condition and ex-
plained 32.1% of the phenotypic variance. For drought
treatment, stem fresh biomass, seed weight and number of
seeds (g/100 seeds) showed the greatest effects with R2

(18%, 17% and 15%, respectively). These QTLs were
found linked to the BM159 marker in Pv 3, the BAR3474
marker in Pv 1 and the BAR3045 marker in Pv 7, with a
contribution from the SEA 5 allele. All the QTLs detected
under drought treatment showed a contribution from the
SEA 5 parental allele, except for one chlorophyll QTL
identified in Pv 11 and one QTL for leaf temperature identi-
fied in Pv 7. Fresh and dry biomass had a positive allele
from AND 277 under irrigated treatment, whereas leaf tem-
perature had a positive allele from AND 277 under both
treatments. The number of pods and days to flowering un-

der the irrigated treatment and the number of seeds and seed
weight under both treatments had a negative allele from
SEA 5. Positive and negative alleles contributed to yield in
the irrigated treatment. Most of the QTL identified a contri-
bution from SEA 5 (13) rather than from AND 277 (9).

Discussion

When compared to other maps (Campos et al., 2011;
Blair et al., 2012; Oblessuc et al., 2014) the position of the
markers remained the same on the 11 chromosomes, thus
confirming the robustness and reliability of the genetic map
generated by this study. The markers were placed on all 11
chromosomes and covered the whole genome, thereby al-
lowing identification of the QTLs under two irrigation sys-
tems. The average genetic distance between markers was
4.5 cM and therefore provides a dense map ideal for QTL
analysis.

Exposure of the plants to drought stress substantially
decreased the leaf water potential, relative water content
and transpiration rate, with a concomitant increase in leaf
temperature (Siddique et al., 2001). SEA 5 had cooler
leaves than AND 277, apparently by reducing the leaf tem-
perature in drought conditions (Table 2).

Three types of drought stress are commonly recog-
nized, with two types of water supply (irrigated for non-
stress and rain-fed for drought stress) being used to assess
the effects of the intensity and duration of drought on crop
growth and seed yield in genetically fixed materials (Blair
et al., 2012; Sabadin et al., 2012). In this study, terminal
drought stress was chosen because it affects over 60% of
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Table 2 - Analyses of variance for quantitative traits for AND 277, SEA 5 and recombinant inbred lines of the AS population evaluated in a greenhouse
under irrigated and non-irrigated (water-stressed) conditions.

Irrigated Non-irrigated

Parents Parents

Trait SEA 5 AND 277 Diff Mean RILs h2
g SEA 5 AND 277 Diff Mean RILs h2

g

Chlorophyll 42.46 43 ns 41.69* 0.54 23.85 26.96 ns 26.81* 0.71

Leaf area 2098.7 2315.3 ns 1402.59* 0.75 390.25 149 * 303.96* 0.87

Fresh leaf biomass 32.83 37.5 ns 26.59* 0.93 4.75 1.83 * 3.17 ns 0.21

Stem biomass fresh 23.83 24.66 ns 17.07* 0.89 5.87 4.16 ns 4.92* 0.56

Dry leaf biomass 4 6.83 * 3.47* 0.64 1.87 1 * 1.01 ns 0.12

Dry stem biomass 3.33 4.33 ns 2.04* 0.36 1.25 1.5 ns 1.18* 0.39

Leaf temperature 23 30.33 * 28.25* 0.61 33.33 35.5 * 34.63* 0.44

Days to flowering 31 37.75 * 36.77* 0.92 38 36 * 36.37* 0.94

Number of pods 13 5.25 * 10.56* 0.49 13 5 * 14.53* 0.53

Number of seeds/pod 4.23 2.32 * 2.8* 0.64 4.5 2.7 * 2.75* 0.73

Yield (g/plant) 9.46 4.6 * 6.67* 0.9 11.99 3.52 * 7.74* 0.95

Number of seeds 53.33 12.25 * 27.79* 0.35 48 10.5 * 37.65* 0.46

Seed weight (g/100 seeds) 21.88 38.68 * 22.02* 0.84 23.18 12.47 * 23.89* 0.73

Pod weight 4.14 1.14 * 2.28* 0.28 4.33 2.12 * 3.87* 0.68

Diff – difference between parents, h2
g – heritability. *p < 0.05; ns – not significant.
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dry bean production worldwide (White and Singh, 1991),
with the most affected areas in Latin America being north-
eastern Brazil and Central America. Although terminal
drought stress is one of the most severe types of drought,
the results of this experiment found a 30% reduction in
grain yield and, surprisingly, even with the large reduction,
some of the RILs had higher yields under terminal drought
stressed conditions. These results corroborated those of
Acosta-Diaz et al. (2004) and may be explained by the ob-

servation that the drought allele (an allele for a favorable
environment) was accompanied by a neutral allele for the
other environment. This implies that yield under drought
conditions and yield under well-watered conditions are not
mutually exclusive and can be combined (Beebe et al.,
2011). Analysis of variance of the quantitative traits
showed that the SEA 5 parental line was significantly supe-
rior for almost all the traits measured under water stress
conditions, except for leaf temperature. Under normal con-
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Figure 2 - Common bean linkage map constructed using the AND 277 x SEA 5 RIL population. The positions of the QTLs for drought (blue) and irri-
gated treatments (red) are shown. Chromosomes were assigned based on the P. vulgaris L. genome (http://www.phytozome.net/).

Table 4 - Identification of quantitative trait loci for significant drought tolerance in the AS population, their marker interval, marker located nearest to the
QTL peak and its distance from the peak (in cM).

Trait Linkage group (Pv) Interval (cM) Marker (distance to the peak) R2 (%) Additive effect

Chlorophyll 6 95.54–140.45 BAR5885 (0 cM) 32.1 -3.87

Chlorophyll 11 56.23–78.68 BAR3594 (0 cM) 11.4 2.14

Fresh stem biomass 3 72.55–98.25 BM 159 (2 cM) 18.3 -0.11

Leaf temperature 7 140.9–171.98 BAR2897 (6 cM) 14 0.57

Number of seeds 7 29–54.34 BAR3045 (3 cM) 15.5 -0.52

Number of seeds 8 39.86–63.42 BAR4250 (8 cM) 0.09 -0.04

Seed weight (g/100 seeds) 1 54.88–76.87 BAR3474 (0 cM) 17.3 -0.12

Dry weight pod 11 56.23–77.52 BAR3100 (0 cM) 14.2 -0.15

R2 – coefficient of determination %



ditions, the days to flowering trait in SEA was greatly infe-
rior to that of AND 277 under well-watered conditions and
was greatly delayed under stress conditions (but was signif-
icant in both cases). The performance of SEA 5 with regard
to the number of seeds/pod, yield, seed weight and pod
weight was better under drought (stress) compared to well-
watered conditions, whereas the number of pods was unaf-
fected.

Eight QTLs for drought conditions were identified
and showed different levels of genetic variability; these
QTLs were located on chromosomes 1, 3, 6, 7, 8 and 11. All
the QTLs identified under drought conditions had the SEA
5 allele, except for the QTL for leaf temperature (LT7.1AS –
leaf temperature). Fourteen QTLs were identified in the ir-
rigated environment, with R2 values ranging from 10% to
33%, and were located on chromosomes 1, 3, 4, 5, 6, 7 and
11. QTLs were identified in all chromosomes except for
chromosomes 2, 9 and 10. Overlapping QTLs were identi-
fied in chromosomes 1, 3, 6, 7 and 11. Blair et al. (2012)
also found some overlapping QTLs and suggested that
pleiotropic genes controlled two or more traits. Mukeshi-
mana et al. (2014) found that correlated variables such as
phenology, yield and yield components, co-localized on the
same chromosome and that the yield QTL occurred mainly
on Pv03 and Pv09. In the present study, leaf fresh biomass,
stem fresh biomass, leaf biomass dry weight and the num-
ber of pods clustered together in Pv 7 under well-watered
conditions. Although LBD7.1AS (dry leaf biomass) showed
a higher marker interval, it showed the same marker for the
QTL peak (BAR4417) as SBF7.1AS (fresh stem biomass).

QTLs for chlorophyll, stem fresh biomass, leaf tem-
perature, number of seeds and seed weight were identified
in both treatments. For days to flowering, leaf fresh bio-
mass, leaf biomass dry weight, number of pods and yield,
QTLs were detected only in the irrigated treatment. For pod
dry weight, a QTL was identified under drought conditions.
The seed weight trait was important given that seed filling
is inhibited under drought stress, so large seeds may indi-
cate tolerance to drought and lead to higher yields (Ra-
mírez-Vallejo and Kelly, 1998). Furthermore, the allele for
seed size under drought and irrigated conditions came from
the drought-tolerant parent, SEA 5. Two QTLs were found
for seed weight, one in Pv 1 and the other in Pv 5. Blair et al.

(2012) also found QTLs for seed weight in Pv 5 and
Broughton et al. (2003) found QTLs in Pv 1. QTLs for days
to flowering were found in Pv 1 and 3, while Broughton et

al. (2003) located them in Pv 1 and 8. According to
Mukeshimana et al. (2014), Pv03 also seems to be related
to the seed weight QTL.

The nature of drought and its interaction with multi-
ple environmental factors make the validation of QTLs
much more complex. Schneider et al. (1997) studied the ge-
netics of drought resistance using QTLs detected with
RAPD markers. Four markers in one population and five in
a second RIL population were reported to be important for

drought resistance. Beebe et al. (2006) reported the identi-
fication of markers for QTLs under drought and irrigated
conditions in a RIL population derived from the SEA 5 x
MD 23-24 cross; one QTL was common to two drought
seasons, one was specific to each of two seasons, and some
were common to unstressed environments. Blair et al.

(2012) identified several QTLs in a BAT477 x DOR364
RIL, most of them being for seed weight followed by yield
per day, yield per se, days to flowering and days to matu-
rity. However, these authors noted that fewer QTLs were
detected in the first year because of differences in the sever-
ity of drought stress and in the experimental conditions
form year to year (terminal vs. intermittent drought).

In terms of breeding for drought tolerance, BAT 477
has been widely used to improve various classes of com-
mon beans (Terán and Singh, 2002). SEA 5 is an advanced
line derived from BAT 477 that proved to have a superior
background in terms of donor alleles favorable to QTLs as-
sociated with drought tolerance, as shown here. Mukeshi-
mana et al. (2014) reported that the only QTL associated
with yield under drought stress on Pv09 was contributed by
the SEA 5 parent in combined environments, indicating the
importance of SEA 5 alleles in maintaining yield under
drought stress. Gonçalves et al. (2015) studied the combin-
ing ability under drought stress in common bean cultivars
recommended for breeding programs aimed at drought tol-
erance, with grain yield as the parameter. Common beans
of the Durango race, such as SEA 5 from the semi-arid
highlands of Mexico, have been reported to have the high-
est levels of drought resistance (Terán and Singh, 2002).
Thus, combining the germplasms of Durango and Meso-
america races, such as SEA 5 x AND 277, may provide a
consistent source of improved drought resistance for tropi-
cal environments (Mukeshimana et al., 2014).

Since the nature of drought and its interaction with
multiple environmental factors makes QTL validation
much more complex the challenge will be to test combined
populations across broad classes of environments to deter-
mine which QTLs are stable. The complexity of this task
will assist in rationally establishing an effective approach
for marker-assisted selection (MAS). Beebe et al. (2013)
suggested testing a subsample of 30-40 phenotypically ex-
treme segregant RILs in a smaller trial over multiple sites
for the sole purpose of validating the QTLs. Schneider et al.

(1997) validated markers using a small set of selected RILs.
Multiple environment trials should be done and QTL map-
ping confirmed in order to estimate genotype x environ-
ment (G x E) interactions.

The results of this study indicate that SEA 5 and AND
277 parents had contrasting sensitivities to drought toler-
ance, with SEA 5 having a superior background in terms of
donor alleles favorable to QTLs associated with drought
tolerance. The SEA 5 genotype was superior for drought
tolerance for traits such as leaf area, pod dry weight and
yield. Genotyping with SSRs and SNPs showed a high level
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of polymorphism in the AS population and a high level of
map saturation. Among QTLs associated with water defi-
cit, 75% had a contribution from the SEA 5 genitor. For
QTLs relevant to the cultivation of common beans, those
related to leaf area, fresh mass and pod dry weight were the
most important ones. Leaf foliar temperature was not a use-
ful trait for future studies of QTLs associated with drought
tolerance.

Drought tolerance is a complex quantitative trait con-
trolled by many minor QTLs. This study confirmed that
molecular markers are powerful tools for a better under-
standing of the molecular basis of drought tolerance in the
common bean and, once validated, can be used in molecu-
lar breeding.
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