
Tennessee State University Tennessee State University

Digital Scholarship @ Tennessee State University Digital Scholarship @ Tennessee State University

Biology Faculty Research Department of Biological Sciences

12-13-2020

Adaptive ensemble of classifiers with regularization for Adaptive ensemble of classifiers with regularization for

imbalanced data classification imbalanced data classification

Chen Wang
Sichuan University

Chengyuan Deng
Rutgers University - New Brunswick/Piscataway

Zhoulu Yu
Zhejiang University

Dafeng Hui
Tennessee State University

Xiaofeng Gong
Sichuan University

See next page for additional authors

Follow this and additional works at: https://digitalscholarship.tnstate.edu/biology_fac

 Part of the Categorical Data Analysis Commons

Recommended Citation Recommended Citation
Chen Wang, Chengyuan Deng, Zhoulu Yu, Dafeng Hui, Xiaofeng Gong, Ruisen Luo, "Adaptive ensemble of
classifiers with regularization for imbalanced data classification", Information Fusion, Volume 69, 2021,
Pages 81-102, ISSN 1566-2535, https://doi.org/10.1016/j.inffus.2020.10.017.

This Article is brought to you for free and open access by the Department of Biological Sciences at Digital
Scholarship @ Tennessee State University. It has been accepted for inclusion in Biology Faculty Research by an
authorized administrator of Digital Scholarship @ Tennessee State University. For more information, please contact
XGE@Tnstate.edu.

https://digitalscholarship.tnstate.edu/
https://digitalscholarship.tnstate.edu/biology_fac
https://digitalscholarship.tnstate.edu/biology
https://digitalscholarship.tnstate.edu/biology_fac?utm_source=digitalscholarship.tnstate.edu%2Fbiology_fac%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/817?utm_source=digitalscholarship.tnstate.edu%2Fbiology_fac%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:XGE@Tnstate.edu

Authors Authors
Chen Wang, Chengyuan Deng, Zhoulu Yu, Dafeng Hui, Xiaofeng Gong, and Ruisen Luo

This article is available at Digital Scholarship @ Tennessee State University: https://digitalscholarship.tnstate.edu/
biology_fac/87

https://digitalscholarship.tnstate.edu/biology_fac/87
https://digitalscholarship.tnstate.edu/biology_fac/87

Adaptive Ensemble of Classifiers with Regularization for
Imbalanced Data Classification

Chen Wang†1,2, Chengyuan Deng2, Zhoulu Yu3, Dafeng Hui4, Xiaofeng Gong1, and
Ruisen Luo1,*

1Sichuan University, Chengdu, China 610065
2Rutgers University – New Brunswick, Piscataway, USA 08854

3Zhejiang University, Hangzhou, China 310058
4Tennessee State University, Nashville, USA 37209

*Corresponds to Ruisen Luo: rsluo@scu.edu.cn

Abstract

The dynamic ensemble selection of classifiers is an effective approach for processing label-
imbalanced data classifications. However, such a technique is prone to overfitting, owing to the
lack of regularization methods and the dependence of the aforementioned technique on local
geometry. In this study, focusing on binary imbalanced data classification, a novel dynamic
ensemble method, namely adaptive ensemble of classifiers with regularization (AER), is pro-
posed, to overcome the stated limitations. The method solves the overfitting problem through
implicit regularization. Specifically, it leverages the properties of stochastic gradient descent to
obtain the solution with the minimum norm, thereby achieving regularization; furthermore, it
interpolates the ensemble weights by exploiting the global geometry of data to further prevent
overfitting. According to our theoretical proofs, the seemingly complicated AER paradigm, in
addition to its regularization capabilities, can actually reduce the asymptotic time and mem-
ory complexities of several other algorithms. We evaluate the proposed AER method on seven
benchmark imbalanced datasets from the UCI machine learning repository and one artificially
generated GMM-based dataset with five variations. The results show that the proposed algo-
rithm outperforms the major existing algorithms based on multiple metrics in most cases, and
two hypothesis tests (McNemar’s and Wilcoxon tests) verify the statistical significance further.
In addition, the proposed method has other preferred properties such as special advantages
in dealing with highly imbalanced data, and it pioneers the research on the regularization for
dynamic ensemble methods.

Keywords - Adaptive ensemble; Gradient Boosting Machines; Regularization; Imbalanced data
classification

1 Introduction
Imbalanced data classification refers to the classification of datasets with significantly different
instance numbers across classes [1]. Specifically, for the binary imbalanced data classification
problem, there is usually a dominating number of instances from one class (the majority class) and
a few instances belonging to the other class (the minority class). The problem of binary imbal-
anced data classification is common in engineering and scientific practices [2, 3, 4]. The problem is
non-trivial, because most of the general-purpose classification methods will overwhelmingly favor
the majority class in the label-imbalanced scenario, leading to significant performance degrada-
tion. Consequently, the development of binary imbalanced classification algorithms has become an
independent and active research area.

Among the popular algorithms for binary imbalanced classification, the dynamic ensemble of
classifiers has attracted significant attention. It works by training multiple classifiers using different
subsets of the data, and dynamically selecting from, or combining them, during the inference

†Work was done at Sichuan University. The author is now at Rutgers University – New Brunswick.

1

ar
X

iv
:1

90
8.

03
59

5v
3

 [
cs

.L
G

]
 6

 N
ov

 2
02

0

process. By picking the most competent classifier(s) for each specific test instance, this approach
can mitigate the “majority favoritism” in imbalanced data classification [5, 6]. There are various
advanced algorithms built on the strategy of the dynamic ensemble model, and the novelty of most
of them lies in their use of certain new techniques to ‘ensemble’ models. For instance, [7] proposes a
generalized mixture function to combine different classifiers, and [8] proposes an adaptive ensemble
method based on the classification problem. We review a few similar methods in this paper, and
more details are presented in Section 2.

Despite the success of the dynamic ensemble of classifiers with regard to various tasks, we
are unaware of any existing model that addresses the overfitting exhibited by such classifiers.
Overfitting is a common problem, wherein the behavior of the classifiers overly fit the training
data. This adversely affects the performance on the test data, because not all the information in
the training data is useful (e.g. noises). At first glance, it appears that the dynamic ensemble of
classifiers can safely circumvent the curse of overfitting, because they utilize the test data during
the selection of classifiers. However, because each classifier is usually trained using a small subset
of data (which contains information from the local geometry only), dynamically picking the most
competent of them can lead to the overfitting of the local geometry of these classifiers. Even if
we interpolate the dynamic ensemble with a set of (fixed) trained weights for the classifiers, the
overfitting problem will persist, as the weights are obtained purely from the training data. Hence,
it seems there is no simple solution to the overfitting problem of the dynamic ensemble of classifiers.

We solve the aforementioned problems using the regularization effect arising from gaussian
mixture model (GMM)-based resampling and the stochastic gradient descent (SGD) algorithm.
The proposed method is called the adaptive ensemble of classifiers with regularization (AER), where
the term “with regularization” refers to the two types of regularization schemes that are developed
in this study. The AER method first performs data resampling based on the GMM [9, 10]. We
will generate two types of subsets. The first type will have a broader inclusion of the points from
the majority class, and the second will have an almost balanced number of instances from the
two classes. The former type of subsets can force the classifiers to consider the global geometry;
therefore, this is the regarded as the first regularization to alleviate the overfitting problem. The
latter type of subsets provides information on the local geometries to ensure they fit sufficiently
powerful classifiers. After completing the resampling process, one individual classifier is learned for
each sampled subset, and we explicitly learn a set of fixed coefficients/weights by optimizing the
cross-entropy loss of the combined model with the SGD. The adaptation of the SGD is the second
regularization, and its effectiveness has been verified by numerous studies [11, 12, 13, 14]. During
the inference procedure, the normalized coefficient of each individual classifier will be determined
by a combination of the on-the-fly likelihood and the trained classifier coefficients.

We theoretically and empirically evaluate the performance of the proposed AER. From a the-
oretical perspective, we analyze the time and space complexity of the AER model, and prove that
the seemingly complicated AER model actually requires less time and memory to train. From an
empirical perspective, we test the performance of the AER model, using the XGBoost classifier
[15] (we refer to the combined method as AER-XGBoost) based on seven imbalanced UCI machine
learning datasets and a GMM-generated dataset with five variations. Based on multiple metrics,
experimental results reveal that the AER-XGBoost model exhibits competitive performances, out-
performing multiple standard methods, such as the SVM and decision tree, and state-of-the-art
methods, such as the focal loss neural network [16], vanilla XGBoost [15], focal loss XGBoost [17],
and the LightGBM model [18]. The Mcnemar’s and Wilcoxon signed-rank tests are performed
to further validate the superior performance of the AER, and the results are mostly sufficient to
reject the null hypothesis for performance difference. We note that the AER generally performs
significantly better in severe label-imbalanced and complex decision boundary scenarios.

The rest of the paper is structured as follows: Section 3 introduces the algorithm in detail, with
its properties. Section 4 analyzes the advantageous time and memory complexity of the proposed
algorithm. Experimental Framework and and results analysis are demonstrated in Section ?? and
Section 6 respectively, and related discussions are presented in Section 7. Lastly, Section 8 provides
a general conclusion of the paper.

2 Related Work
Imbalanced data classification refers to the classification problem where the number of samples for
each class label is not balanced, or, where the class distribution is biased or skewed [1]. Since most

2

of the standard classifiers assume relatively balanced class distributions and equal mis-classification
costs, the class-imbalance can be perceived as a form of data irregularity [19], and it could sig-
nificantly deteriorate the performances of classifiers. Performing high-accuracy classification using
imbalanced data has been a challenge for a long time, and there have been considerable number
of publications discussing novel methods to address the problem. The methods can be roughly
categorized into four branches [20, 21]. The first branch is the re-sampling methods that gen-
erate balanced data by under-sampling the majority class, and/or over-sampling the minority
instances [22]. The second branch is the cost-sensitive algorithms that address the problem by
using imbalance-sensitive target functions, and assigning special loss functions explicitly ([23]) or
implicitly ([24, 25, 26]). The third branch is the one-class learning methods that solve the label-
imbalance problem by learning the representation of the majority/minority data [27, 28]. The final
branch is the ensemble methods that contain the dynamic ensemble of classifiers, as employed in
this study.

The idea of the ensemble methods (and, by implication, the dynamic ensemble of classifiers) is
to utilize ‘the wisdom of the many’; a typical ensemble method will fit multiple classifiers and/or
re-sampled multiple datasets, and then combine them in some way to obtain final predictions [29,
30, 31, 32]. On the other hand, the static ensemble of classifiers approach will complete the training
of the individual classifiers and their weights based solely on the training data [33]. This approach
requires less computational resource, as the predictions can be obtained using a fixed model.
However, when encountering noises in the minority or complex and rapidly changing decision
boundary between the classes, the static ensemble methods often suffer performance degradation
[34, 33, 35]. On the other hand, the dynamic ensemble methods will change the combination
of classifiers on-the-fly, according to the test instances. Compared with its static counterpart,
the dynamic ensemble of classifiers introduces greater model flexibility and representation power.
Multiple studies have empirically shown that the dynamic ensemble is a more preferred choice,
based on different metrics [5, 6, 36].

The dynamic ensemble approach can be roughly divided into two categories: the dynamic
classifier selection (DCS) approach, wherein the most competent classifier is selected dynamically
([37]), and the dynamic ensemble selection (DES), wherein multiple classifiers are selected for
prediction ([38]). Earlier works in the area often adopt the DCS strategy; for instance, Woods
(1997) [37] utilizes a “rank-based” method to select the most competitive classifier. Conversely,
because the DES is more flexible, modern scientists have investigated more novel methods based
on it. Most of the recent models pin their novelty on the renewed strategies to combine/ensemble
the classifiers. For instance, Lin et al. (2014) [39] proposed a method to ensemble classifiers based
on clustering results; Cruz et al. (2015) [40] designed an algorithm to combine classifiers using
meta-learning; Xiao et al. (2012) [41] introduced cost-sensitive criteria to determine the weights
of the ensemble; Krawczyk et al. (2018) [42] used the dynamic ensemble of one-class classifiers to
train the model with regard to multiple classes; and Brun et al., (2018) [8] proposed adjusting the
ensemble based on the difficulty of classification. Nevertheless, despite the fruitful results in the
literature, to the best of our knowledge, we do not know any method under the DES framework
wherein regularization is introduced (to avoid overfitting).

We assume that the absence of such research is because there is no obvious approach to introduce
regularization to the dynamic ensemble model. Conventional norm-based regularization works by
minimizing the norms of the weights; however, in the dynamic ensemble scenario, the weight of
each classifier cannot be shrunk, because they should be in the range of [0, 1], and sum up to 1 (a
simplex). Other existing regularization techniques are either not applicable to the scenario (e.g.,
NoiseOut [43], which is designed for neural networks), or considered too “aggressive” for linear
combination (e.g., dropout [44], which will block some classifiers entirely). To overcome the above
obstacles, the AER is regularized implicitly based on two techniques: global-geometry interpolation
and the SGD algorithm. The regularization effect of the first approach is derived from previous
ideas on data resampling, and the central idea is to reduce the impact of the noise from the overlap
between the classes [45, 46]. The regularization power of the second approach (SGD) is supported
by its attribute of converging to a solution with a minimum `2 norm [47], and multiple theoretical
and empirical results have proved its effectiveness [12, 48].

Binary imbalanced classification has a broad range of applications. In bioscience and medical
research, imbalanced data classification has been utilized to identify tumor [2], and diagnose cancer
[49]. Likewise, in software engineering, it has been employed to detect bugs [50] or malignant
software [51]. In other fields, such as financial fraud detection [52] and power transformation [3],

3

imbalanced data classifications are also comprehensively employed. Guo (2017) [1] surveys the
applications of imbalanced data classification, and shows the promising potential in applying such
a technique to a broader range of problems.

3 Methods
In this section, we introduce the details of the proposed AER model. The structure is laid out
as follows: Section 3.1 will introduce the GMM-fitting and generation of the two types of subsets;
Section 3.2 will discuss the specific implementation with XGBoost, which is the individual ‘base’
classifiers used in the experiments; the SGD training for the ensemble of classifiers will be illustrated
in Section 3.3; and finally, the weight interpolation/combination and probabilistic prediction will
be shown in Section 3.4. The overall procedure of the algorithm is shown in Figure 1.

Before diving into the details, we shall specify the notations that will be used. We use x to
denote a single instance of the data in the dataset X. To distinguish the majority and minority
data, we use Xk (key data, usually the minority) to denote the set of minority data and Xn

(non-key data, usually the majority) to represent the set of majority data. The size of the dataset
is denoted by m, and the dimension (the number of features) is represented by n; we use mk and
mn to denote the number of points of the minority and the majority data. Finally, L denotes the
number of Gaussian distributions in the GMM, and 2L is the number of classifiers, according to
our setup.

3.1 Gaussian Mixture Model Fitting and Subset Generation
The GMM is a popular model in unsupervised learning and data manifold representation. The
basic idea behind the GMM is straightforward; it utilizes the modeling capability of the Gaussian
distribution, and extends it to multiple centroids to improve the expressiveness. The likelihood of
a single instance in the GMM can be denoted as follows:

p(x|{µl,Σl, wl}) =

L∑
l=1

wlN (x|µl,Σl) (1)

where N (·|µ,Σ) denotes a multivariate Gaussian distribution, with µ as the mean and Σ as the co-
variance. When fitting the model, the parameters can be obtained by maximizing the log-likelihood:

{µ̂l, Σ̂l, ŵl} = arg max
µl,Σl,wl

log(

m∏
i=1

L∑
l=1

wlN (xi|µl,Σl))

= arg max
µl,Σl,wl

m∑
i=1

log(

L∑
l=1

wlN (xi|µl,Σl))

(2)

Equation 2 can be solved using an expectation-maximization (E-M) algorithm with a super-linear
convergence rate [53]. In our program, the package of the GMM provided by SciKit-learn [54] is
directly adopted, to perform the fitting procedure of the GMM.

It may be observed that the GMM is sensitive to initialization. To obtain stable results, the
optimization will be performed 5 times for each training procedure, and the model with the high-
est log-likelihood will be selected. Another non-learnable parameter in the GMM is the number
of Gaussian distributions. In the proposed algorithm, this hyper-parameter also determines the
number of components in the final ensemble. To obtain the optimal number of components that
optimally balances the likelihood and computational complexity, the Bayesian information crite-
rion (BIC) is adopted. The BIC metric can be computed as follows:

BIC = log(m)‖f‖ − 2

m∑
i=1

log p(xi) (3)

where ‖f‖ stands for the number of the parameters of the model, and p(xi) indicates the likelihood
of the instance xi. In terms of the GMM presented in our method, the BIC will be computed as
follows:

4

Figure 1: The overall process of the proposed AER algorithm

BIC = log(m)‖f‖ − 2

m∑
i=1

log(

L∑
l=1

wlN (xi|µl,Σl)) (4)

In the training process, a “pool” of the possible numbers of Gaussian centroids will be given, and
the algorithm will compute the BIC of each model, and pick the one with the least BIC. We choose
the BIC over the Akaike information criterion (AIC), because the BIC tends to favor the model
that overfits the data less [55]. Because regularization plays an important role in our algorithm,
the BIC is adopted as the choice of hyper-parameter.

After obtaining the GMM with L Gaussian distributions, we form 2L sub-datasets based on
two types of schemes. The first type of scheme will be selecting bmn

L c most representative data
from each of the Gaussian distribution. Specifically, for each Gaussian distribution N (xi|µl,Σl),
the algorithm will select bmn

L c instances with the highest log-likelihood. For the second type of
paradigm, the algorithm will generate L subsets with ml majority instances selected based on
the highest likelihoods, with respect to each Gaussian component, and concatenate it with the
b0.5 ∗ mlc majority instances randomly selected from the set. Both of the generated majority
datasets will be combined with all the minority instances.

After obtaining the above data, a Tomek link [56] will be used to remove instances consid-
ered as noises from the first type of data subsets. Tomek links are based on the idea that if two
instances are mutually nearest neighbors that belong to different classes, they would be ’overlap-
ping’ instances between classes, and be likely to be noises. Formally, for two given data instances
{xi,xj} ∈X and given distance measure d(·, ·), if for any xk ∈X, the following exists:{

d(xi,xj) < d(xi,xk)

d(xi,xj) < d(xj ,xk)
(5)

Then, {xi,xj} will be considered a pair of Tomek link. If the corresponding labels {yi, yj} of the
Tomek link pair belong to different classes, then we regard the majority and/or minority instance
in the pair as noise, and remove one or both of them. In our algorithm, because the minority
will be the more important part to be spotted, the majority instances in the Tomek links will be
removed.

5

By performing the above process, there will be 2L available sub-datasets, with less significant
skewness of labels. As we have explained above, the reason for adopting a combination of two type
of re-sampling methods is that this strategy can separately achieve two different goals satisfactorily.
The first type of subset can preserve the information of the global geometry, and contribute to the
recognition of the majority instances; this helps the AER to avoid overfitting on the overlapping
parts between the majority and the minority instances (i.e., a ‘zoom-out perspective’ to ‘pull back’
the decision boundary from the complexity overlapping part between the two classes). The second
type of subset emphasizes the local geometry, and improves the accuracy of spotting minority
instances (i.e. a “zoomed-in perspective” to focus on learning the complex decision boundary on
the overlapping part). Furthermore, because the second type of datasets focus only on the local
geometry, we will concatenate them with b0.5∗mkcmajority instances randomly selected to prevent
the decision boundary that is away from the local part from “going wild.”

The overall procedure of the GMM-fitting and subset generation is depicted as Algorithm 1.
Data: majority data Xn, minority data Xk, candidate numbers for L
Result: Gaussian Mixture Model {wl,µl,Σl}l=1:L, 2L balanced datasets
for Li in candidate L values do

for trial← 1 to 5 do
initialize Gaussian Mixture Model parameters;
optimize Gaussian Mixture Model with equation 2 via E-M algorithm;

end
Retrieve the model with the highest log-likelihood;
Compute corresponding BIC using equation 4;

end
Select the model with the smallest BIC value;
for i← 1 to L do

select bmn

L c most relevant samples from Xn, according to the log-likelihood of the
Gaussian centroid i;
combine the obtained data with Xk to form the first type of subset X̂k;
select mk most relevant samples from Xn, according to the log-likelihood of Gaussian
centroid i and combine them with b0.5 ∗mkc randomly selected majority instances;
combine the obtained data with Xk to form the second type of subset X̌k;
perform a Tomek link removal for X̂k with equation provided as the condition 5;

end
Algorithm 1: Gaussian Mixture Model Fitting and Balanced Data Generating

3.2 Fitting of Individual Base Classifier
As has been stated above, the specific classifier implemented in this study is the gradient boosting
machine (GBM) ([57]), a boosting-based algorithm. The GBM model can be expressed as follows:

GT (X; {θt}t=1,2,..,T) =

T∑
t=1

αtgt(x;θt) (6)

Similar to other boosting methods, the training strategy of the GBM is to learn from previous
mistakes. Specifically, the individual sub-model of the GBM at the T -th step will set the gradient
of the loss function, with respect to the model, up to (T − 1)-th step as the current ‘labels’, which
can be expressed as follows:

rT−1 = −∂L(y, GT−1(X; {θt}t=1,2,..,T−1))

∂GT−1(X; {θt}t=1,2,..,T−1)
(7)

where L(·, ·) is used to denote any kind of loss function, and is usually the square loss for regression
and the cross-entropy loss for classification. The gradient computed with equation 7 is also named
the ‘pseudo-residual’; because the gradient will be calculated at each step, the overall method is
tagged the GBM. After obtaining the current target, the parameter of the sub-model at the T -th
step can be denoted as follows:

θT = arg min
θ

L(rT−1, G(X;θ)) (8)

6

The overall model at the T -th step is further determined by a ’learning rate’ αT that can be ob-
tained by optimizing the following target function:

αT = arg min
α

L(y, GT−1(X; {θt}t=1,2,..,T−1) + αg(X;θT)) (9)

The above optimization can be simply solved, either by taking partial derivative or through a line
search. By iterating the procedure from Equation 7 to 9, until it matches the convergence criteria,
the integrated GBM model will be obtained.

In our implementation, an integrated, high-efficient, and scalable gradient boosting interface,
XGBoost [15], is employed to fit, and make prediction with the GBM. For each sub-set of data
generated, the algorithm will fit one XGBoost model, denoting as fl(·).

3.3 Stochastic Gradient Descent Training for the Ensemble of Classifiers
After the training with the individual models, each classifier will be able to give a class prediction
(0 or 1) for every data instance. The next step is to train the combination of individual classifiers
using the SGD algorithm. For convenience, each individual model will be denoted as fl(·). We can
denote the linear combination of the models as follows:

F (X) =

2L∑
l=1

wl ∗ fl(X)

s.t.

2L∑
l=1

wl = 1

0 ≤ wl ≤ 1, ∀l ∈ {1, 2, ..., 2L}

(10)

The constraints of Equation 10 is to guarantee that the values of the predictions will be between
[0, 1]; thus, it could simply be transferred to a binary-class prediction. To train the model, the
two-class cross-entropy loss is adopted:

L(y,X) = −
m∑
i=1

yi log(

2L∑
l=1

wl · fl(xi)) + (1− yi) log(1−
2L∑
l=1

wl · fl(xi))

= −
m∑
i=1

yi log(wTf(xi)) + (1− yi) log(1−wTf(xi))

(11)

where the second line of the above equation is the vectorized expression. Note that because there
is a constraint on w, the above optimization cannot be accomplished by simply taking derivatives
and setting them to 0. Furthermore, to perform the SGD algorithm, the gradient of the target 11,
with respect to w should be as follows:

∂L(y,X)

∂w
= −

m∑
i=1

(
yi

wTf(xi)
− 1− yi

(1−wTf(xi))
)f(xi)

=

m∑
i=1

(
1

(1− yi)−wTf(xi)
)f(xi)

(12)

If gradient descent is applied, the gradient in equation 12 does not guarantee that the sum of w
will be 1, neither does it warrant that each wk will be in the interval of [0, 1]. We provide a simple
remedy to this; we can simply re-normalize the weight after learning. In addition, for the weights
exceeding the limit of the interval, we can re-scale them to the limit value (0 or 1). In this way,
the update formula of w should be as follows:

wt+1 =
S(wt − γt∇wtL(y,X))∑L
l=1 S(wt − γt∇wt

L(y,X))l

=
S(wt − γt

∑m
i (1

(1−yi)−wT
t f(xi)

)f(xi))∑L
l=1 S(wt − γt

∑m
i (1

(1−yi)−wT
t f(xi)

)f(xi))l

(13)

7

where γt is the learning rate, and S(·) denotes the re-scaling(mapping) function floor at 0 and
ceiling at 1. This can be mathematically denoted as follows:

S(x) =
x− xmin

xmax − xmin
(14)

It is recommended that the learning rate should be set less than 1
||∇wtL(y,X)|| , to ensure conver-

gence. To determine whether the training procedure has converged, the relative change in the
cross-entropy loss is adopted as the metric.

Another concern regarding using the SGD method is how to initialize the coefficients, as the
optimization is sensitive to initial values. In the proposed algorithm, the initialization of parame-
ters is accomplished by the combination of the AIC and BIC. Similar to the BIC, the AIC can be
expressed as follows:

AIC = 2‖f‖ − 2

m∑
i=1

log(p(xi)) (15)

where p(xi) indicates the likelihood of instance xi. Combining equations 3 and 15, we could com-
pute a combined metric as follows:

w̃l = λA ·AICl + (1− λA) · BICl (16)

where λA is the parameter for striking a balance between the AIC and BIC; experiments demon-
strate that λA = 0.6 could be an effective trade-off. Here, the AIC and BIC are computed with
respect to each classifier, and lower AIC/BIC values indicate a more credible solution. Thus, we
can use the normalized reciprocal of w̃l values to initialize the linear combination. The initial
values can be denoted as follows:

ŵk =
1/w̃l∑2L
l=1(1/w̃l)

(17)

The overall procedure of the optimization of the linearly combined base classifiers can be denoted
as Algorithm 2.

Data: Individual Classifiers f l(·), Corresponding Balanced Data set X(including X̂ and
X̌), where l = 1, 2, ..., 2L

Result: Trained Combination of Models F (·)
Initialize the linear combination model with equation 17;
for t← 1 to Max-Step do

Compute the current gradient with equation 12;
Update the weights with equation 13;
Compute the current cross-entropy loss with equation 11;
if Cross-Entropy Loss Change ≤ tol then

break;
end

end
Algorithm 2: Stochastic Gradient Descent Training of Linear Ensemble of Base Classifiers

3.4 Weight Computation and the Probabilistic Prediction
The preceding three sections have discussed generating balanced sub-datasets, and training indi-
vidual and combined classifiers. As a dynamic ensemble method, the coefficient of each individual
classifier should be on-the-fly, according to the test instance(s). Because we have multiple ‘base’
classifiers, and each of them is trained by its corresponding subset, it makes sense to pick the most
effective ones, based on the test data. Our selection strategy is to compute the ’distance’ (denoted
by the likelihood) between the specific test instance and the Gaussian centroids. Intuitively, a
higher likelihood indicates a more significant impact on the test instance, and we can assign more
‘credit’ to the corresponding classifiers. Based on the above idea, we propose computing the on-
the-fly weights with two types of likelihoods, based on the logarithm and exponential (original)
forms, respectively. More concretely, for any test instance x∗, the component of the normalized

8

likelihood l∗ will be as follows:

l∗ =


logN (x∗|µl,Σl)∑2L
l=1 logN (x∗|µl,Σl)

, Log-likelihood
N (x∗|µl,Σl)∑2L
l=1N (x∗|µl,Σl)

, Exp-likelihood
(18)

In the above equation, because the global geometry is considered (especially in the normalization),
the on-the-fly weights are regularized. Finally, for the purpose of the SGD-induced regularization,
we will interpolate the on-the-fly weights with the learned static ones:

w∗ = λl∗ + (1− λ)w (19)

where the “+” operation stands for pairwise summation. λ is the interpolation parameter, and the
optima can be found via the training or the validation data through grid search. It is easy to verify
that the results computed by equation 19 satisfy the condition that the sum should be equal to 1,
and the value of each coefficient will be in the interval [0, 1].

Following the above procedure, the algorithm will compute a probabilistic value wT f(x∗) ∈
[0, 1] for each test point x∗. The output can be regarded as the probability of p(y∗ = 1|x∗), and
instead of simply setting all samples greater than 0.5 as 1, and less, as 0, the threshold can be
tuned, based on the following equation:

F (x∗) =

{
1,wT f(x∗) ≥ δ
0,wT f(x∗) < δ

(20)

where δ can be regarded as a ”threshold value,” and the optima can be found via the validation
data through grid search.

The overall procedure of the proposed AER with the XGBoost implementation (AER-XGBoost)
can be depicted as algorithm 3.

Data: Imbalanced Data Set with Data Separated as Xn and Xk; Test Data Set X∗

Result: Label Predictions using the overall model F (X∗)
Performe the GMM-fitting for the majority class, and generate 2L balanced subsets, based
on the algorithm 1;
for l← 1 to 2L do

Initialize the current XGBoost Model f l(·);
for t← 1 to Maximum-Boosting-Depth do

Update the XGBoost Model according to equations 7-9;
end
Store the current model f l(·);

end
Linearly combining the models with coefficients learned from Algorithm 2;
Use the validation or the training data to find the optimal λ value and δ value
for each test point x∗ do

Compute the interpolated weight l∗ of instance x∗ with equation 18;
Update the weights w∗ through equation 19;
Predict the current label F (x∗) with equation 20;

end
Algorithm 3: Overall Algorithm

4 Theoretical Analysis of the AER
In this section, we will demonstrate that the proposed AER method has advantageous time and
memory complexity. Specifically, we will show theoretically that, under certain assumptions and for
any classifier implemented with the AER framework, the time complexity will be, asymptotically,
at least as good as the original implementation, and the asymptotic memory complexity will always
be better than the full-batch implementations.

To begin with, let us recap the notations used in the AER model. Recall that m denotes
the number of instances, and n represents the number of features. mk and mn are used for
the minority and majority data, respectively. The skew rate here will be denoted as R; it is
straightforward to deduce that mn = R · mk. The number of Gaussian centroids is given as L,

9

and, in most cases, L < R, as it will otherwise miss the purpose of re-sampling (it is possible to
simply train balanced sub-sets, and include all the training set). This also implies that L < m
as m = (R + 1)mk ≥ (R + 1) > L. The number of iterations of the GMM E-M algorithm will
be denoted as t1, and the number of iterations of the SGD algorithm is denoted by t2. The
time complexity of any machine learning classifier T (m,n) can be denoted as a polynomial of the
numbers of instances and features T (m,n) = O(manb), where a and b should be positive integers.
Similarly, we will denote the memory complexity using M(m,n) = O(manb). We are preoccupied
mostly with the complexity of the training process, as this will usually be the part that consumes
most of the time and memory.

To derive a boundary that is not dependent on the GMM-fitting or SGD part, and draw fair
comparisons between the AER-implemented methods and the original methods, the analysis will
be based on the assumption that the GMM covariance inversion and likelihood will be estimated
through the diagonal covariance approximation. This will remove high-order terms of n, and reduce
the time complexity of computing the GMM to O(mn), as the inversion and multiplication of the
covariance can be completed within O(n) time. Further, we assume the choice of λ and δ is based
on the validation set, and its size is considerably smaller, with the condition m = Ω(mvL), where
mv is the number of validation data points.

4.1 Time Complexity
For any machine learning method with polynomial training time complexity T (m,n) = O(manb),
the AER time complexity can be denoted as TAER(m,n). Under the assumptions stated above,
the following theorem can be derived:

Theorem 1. Assuming t1 = O(log(m)) and t2 ≤ n · R/L, the following property holds: If a = 1,
which means T (m,n) ∈ Õ(mnb), then, there will be TAER(m,n) ∈ Θ̃(T (m,n)); otherwise, if a ≥ 2,
which means T (m,n) ∈ Ω(m2nb), then, there will be TAER(m,n) ∈ o(T (m,n)). Both Õ(·) and
Θ̃(·) hide polylog terms.

Proof. The theorem can be proved by a simple analysis. The memory complexity of the AER
method can be decomposed into four parts: the complexity of computing the GMM model, the
training complexity of the individual classifiers, the SGD, and the validation part to obtain the
optimal δ and λ. Each part will have the following complexity:

• Fitting the GMM model. The algorithm will fit the 2L Gaussian distributions; it will take
L·O(t1

m
L n)+L·O(t1

m
Rn) to fit the models under diagonal covariance. The overall complexity

will be O(t1mn). Observe that L < R is used in the derivation.

• Training individual classifiers. For the first type of re-sampled data, the number of training
instances will be m̂ = O(mn

L + mk) = O(RLmk) = O(mL); for the second type of re-sampled
data, the amount of training samples will be m̂ = 2.5mk = O(mk) = O(mR). Given the
polynomial-form time complexity T (m,n) = O(manb), the complexity of this part will be
L · [O((mL)

a
nb) +O((mR)

a
nb)] = O(L(mL)

a
nb) = O(ma

La−1n
b).

• Stochastic gradient descent. This part will take O((mn+ bN)Lt2), where bN is the batch size
of the SGD, and t2 is the number of iterations. bN is a constant, and can therefore be hidden
asymptotically, resulting in O(mnLt2) = O(mLt2R) runtime.

• Validation of the optimal λ and δ parameters. Under the option of diagonal covariance
approximation, the likelihood estimation of a single data point will be O(Ln). It is estimated
that all the sets are O(Lmvn). The optimal λ and δ values need to be obtained via multiple
running times; however, the factor can be hidden, as it will be a constant.

Summarizing the above terms, the overall complexity will be O(t1mn+ ma

La−1n
b + mLt2

R + Lmvn).
Because the condition is given as t2 ≤ nR

L andm,n ≥ 1, the third term can be hidden. Furthermore,
because we assumed a large training set and a small validation set with m = Ω(mvL), the final
part can be hidden, and the complexity will be TAER(m,n) = O(ma

La−1n
b).

Now for the two cases:

• If a = 1, it could deduced that TAER(m,n) = O(t1mn+ m
L0n

b) = O(m log(m) · n+mnb) =

Θ̃(T (m,n)).

10

Table 1: Comparison of training time complexity between common Machine Learning classifiers
implemented via full-batch original scheme and AER

original scheme AER
Naive Bayes mn mn

Decision Tree m2n m2

L n

Non-linear SVM m3n or m2n m3

L2 n or m2

L n

Gradient Boosting mn|T | mn|T |

• If a ≥ 2, there will be TAER(m,n) = O(m log(m) · n+ ma

La−1n
b) = o(manb) = o(T (m,n)).

Because the E-M algorithm used to compute the GMM model converges super-linearly, the
assumption of t1 = O(log(m)) is not far from the reality. Theorem 1 indicates that by re-sampling
the dataset, the proposed AER method can reduce the time complexity, when the original com-
plexity is super-linear, with respect to the amount of data m, and will not be worse than the
original full-batch implementation, when the complexity is linear to m.

Table 1 presents the comparison results of the time complexity among common machine learning
classifiers implemented using the original full-batch scheme and the AER framework. From the
table, it can be observed that the higher the order of m in an algorithm, the more advantages the
AER framework will bring. The GBM, which is the method-of-choice in our base classifier, is also
listed in the table, and |T | denotes the number of trees in the algorithm. It can be observed that our
implementation of the GBM is based on the XGBoost, a parallelized GBM method; furthermore,
our implementation does not conform to the polynomial-time regime of our analysis. Nevertheless,
the rigorous analysis of the time complexity provides a convincing proof of the advantage of the
proposed AER method.

4.2 Memory Complexity
For any machine learning method with polynomial-training memory complexityM(m,n) = O(manb),
the AER memory complexity can be denoted as MAER(m,n). Based on the assumptions stated
above, the following theorem can be obtained:

Theorem 2. For any a, b ∈ N+, MAER(m,n) ∈ o(M(m,n))

Proof. Similar to the analysis of the time complexity, the memory complexity of the AER is de-
composed into four parts:

• Fitting the GMM model. The model needs to store n values under the setting of diagonal
variance; thus, the memory complexity will be O(nL).

• Training the individual classifiers. Similar to the time complexity proof, the two types of
subsets will have the number of samples in O(mL) and O(mR), respectively. One difference
here is that for the memory complexity, one could use the same memory for every Gaussian
component. Thus, the memory complexity will be O((mL)anb).

• Stochastic gradient descent. One only needs to keep 2L slots in the memory, to update the
weights such that the memory complexity will be O(L).

• Validation of the optimal λ and δ parameter. For each Gaussian component, the validation
process will take O(n) memory, and each data point will need O(nk). The likelihood of the
m data will be stored, which means there should be an additional O(m) complexity. The
overall complexity of this part will be O(m+ nk).

The final complexity will be given as O(nL + (mL)anb + L + nL) = O(nL + (mL)anb). Further,
because L < m, the complexity can be simplified as O((mL)anb), with a simple derivation, one
could obtain MAER(m,n) = O((mL)anb) = O(m

a

La n
b) = o(manb) = o(M(m,n))

11

It can be observed that the theory of memory complexity is a stronger conclusion than that
of time. Firstly, it removes the restrictions on the iteration times, and the memory complexity is
unconditionally bounded. Secondly, the theorem 2 proves a strict upper bound with the little-oh
notation (which indicate strictly slower growth asymptotically), regardless of the choice of a.

5 Experimental Analysis: the Framework
In this section, we introduce the framework of our empirical analysis for the AER model. We
introduce the datasets in section 5.1 with their backgrounds and characteristics. The methods
compared against the AER model are discussed in section 5.2, and the metrics to evaluate the
results are presented in section 5.3. Finally, we discuss our approaches for statistical testing to
validate the significance of the results in section 5.4.

5.1 Datasets
We introduce 12 imbalanced datasets to evaluate the performance of the proposed AER method.
Seven of them are from the UCI machine learning repository1(Bioassay, Abalone (originally from
[58]), Ecoli, US Crime, Wine Quality, Scene and Car Eval), and are regarded as benchmark datasets
for imbalanced binary classification. For the Bioassay dataset, we adopt the AID 362 collection,
and split it with the train/test ratio of 4 : 1. Table 2 shows the statistics of these datasets.
In addition, we provide five artificially generated imbalanced datasets sampled from 8,9,10,11,12-
center Gaussian Mixture Models2, respectively. Because of space limitation, we select the Bioassay,
Abalone and the 9-center GMM-based dataset to demonstrate the detailed information, including
the evaluation metrics, the hypothetical testing results, and the curves of the changes on accuracy
with different threshold parameter δ. For the Bioassay dataset, we further plot the SGD-trained
weights and the change in accuracy, with respect to the interpolation parameter λ, to offer more
insights into the model. For the remaining five UCI datasets and other variations of the GMM-
generated data, we only report the results of the evaluation metrics and the results of the statistical
tests.

Table 2 shows the meta-information about the UCI datasets we used in this section. We observe
that among the datasets, Bioassay and Abalone have the most significant imbalance ratio. Thus,
presenting more details through experiments with these two datasets can help us understand the
merits of the AER more clearly. Among all the other datasets, Ecoli is significant for its small size,
which can lead to problems for some data-hungry machine learning methods (e.g. focal loss neural
Networks). The Scene dataset is of a higher dimension (a greater number of features), and in the
corresponding section, we will demonstrate that the AER can perform particularly well, when such
rich-information data is provided.

The GMM-based data are introduced to verify that the AER model follows the intuition,
because the data geometry is truly from a GMM distribution. A set of 8000 samples is generated
through the sk-learn Make-Classification() method, and the imbalance ratio is 1:79, which
indicates that 7900 samples are labeled as “0,” and 100, as “1.” Notice that the “number of Gaussian
centers” is applied to both the majority and minority data, which means the 100 positive-labeled
samples are also from the GMM with 8-12 clusters (depending on the variation). This poses a
significant challenge; the algorithms have to learn a complex decision boundary, while preserving a

1Available Publicly, url: https://archive.ics.uci.edu/ml/index.php
2Available Publicly, url: https://github.com/jhwjhw0123/GMM-Generated-data-imbalance-classification

Table 2: Statistics of seven Datasets from UCI Machine Learning Repository

Dataset Name Number of Samples Imbalance Ratio Number of Features
Bioassay 4279 1:70 118
Abalone 4174 1:129 8
Ecoli 336 1:8.6 7

US Crime 1994 1:12 100
Wine Quality 4898 1:26 11

Scene 2407 1:13 294
Car Eval 1728 1:12 21

12

https://archive.ics.uci.edu/ml/index.php
https://github.com/jhwjhw0123/GMM-Generated-data-imbalance-classification

qualified generalization ability. As shall be seen in the corresponding section, the proposed method
performs well on this dataset, whereas some other methods, including some state-of-the-art models,
completely lose their ability to grasp anything meaningful.

5.2 Compared Methods
We compare seven methods with the proposed AER model with the XGBoost implementation
(AER-XGBoost). Among the seven, three are benchmark binary classification methods, which are
the (cost-sensitive) SVM, (cost-sensitive) decision tree and a (3-layer) focal loss neural network.
The neural network model is engineered with the recently proposed focal loss ([16]) to tackle the
label-imbalance problem. To introduce some more novel and advanced methods for comparison,
we adopted three more recent methods, the XGBoost ([15]), LightGBM ([18]), and Focal-XGBoost
([17]). Among these three methods, the XGBoost is also adopted as the sub-classifier of the AER
model; we can therefore straightforwardly evaluate the benefits brought by the AER framework (in
comparison with the vanilla version and other imbalance-augmentation methods, e.g., focal loss).
Finally, we also report the results based on the pure dynamic ensemble, which can help validate
the contribution of the regularization introduced by the AER.

It is noticeable that apart from the UCI Bioassay data, all the other datasets are not partitioned
into training/testing subsets. Thus, in the experiments, we split the training, validation, and testing
data in the ratio of 3 : 1 : 1. For the Bioassay dataset, part of the results (cost-sensitive SVM and
cost-sensitive decision tree) are retrieved from [59]. It is necessary to tune their parameters to the
optimal; however, we cannot reproduce their results, because we do not know these parameters.
Therefore, for the purpose of fair comparison, we directly reported their results on the cost-sensitive
SVM and cost-sensitive decision tree algorithms.

The parameters of both the AER model and the methods of comparisons are tuned to the
optimal as we know from a fixed range (except the number of Gaussian distributions for the
Dynamic Ensemble and the AER models, since this parameter is manifold-specific and should be
searched from a dynamic range). Notice that since the distributions across datasets are different,
the final parameters to be determined vary among experiments. The details of the final parameters
in each experiment can be found among the results in section 6. For the convenience of the readers,
we also include the range of parameters for all the methods in the appendix.

5.3 Performance Metrics
For an ordinary classification problem, the accuracy can simply be used as the sole metric to
evaluate performance. However, for label-skewed data, the algorithm often achieves a satisfying
accuracy, even by simply predicting every instance as the majority class. Thus, in this scenario, the
spotting results of the majority and the minority data should be examined, respectively. Specifi-
cally, if one regards the minority data as Positive (P), and majority as Negative (N), then, combin-
ing the prediction results and ground-truth labels will yield four prediction outcomes: true positive
(TP), false positive (FP), true negative (TN), and false negative (FN). As a conventional analyt-
ical approach, precision and recall will be introduced to evaluate the quality of the classification
of the majority/minority data. The computation of precision and recall metrics are given as follows:

precision =

{
TP

TP+FP , Minority Data
TN

TN+FN , Majority Data

recall =

{
TP

TP+FN , Minority Data
TN

TN+FP , Majority Data

(21)

Notice that, in this study, the concept of ’precision’ and ’recall’ are extended to class-specified
metrics, in contrast to focusing only on the positive(minority) samples, as in the conventional
statistical analysis. Thus, in our experiments, both the majority and minority recalls are reported.
On the premise of sufficient recall, the TP-FP ratio can also be employed to evaluate the quality
of the label-skewed data classification:

TP-FP Ratio =
TP/(TP + FN)

FP/(TN + FP)

=
recallk

1− recalln

(22)

13

where recallk and recalln stand for the recall of the minority and majority classes, respectively. To
evaluate the overall quantities of precision and recall, the F1 score and G-Mean are introduced.
The F1 score and G-Mean are computed as follows:

F1 = 2
precision ∗ recall
precision + recall

G-Mean =
√

precision ∗ recall
(23)

The F1 score and G-Mean are commonly used metrics in imbalanced classification problems. The
G-mean is usually a visibly more consistent metric, and could therefore provide more reliable
information in our experiments [60, 28].

In addition, the “balanced accuracy” is also introduced as follows:

Balanced Accuracy =
recallk + recalln

2
(24)

In summary, mainly, the following metrics will be used in this study: the recall of both the
majority and minority classes, the TP-FP ratio, F1 score, and G-mean of the minority class, and
the TP-FP ratio, and the Balanced Accuracy as the overall performance evaluation.

5.4 Statistical Testing
To further validate the performance superiority of the AER-XGBoost method, the McNemar’s
test and Wilcoxon signed-rank test are applied to all the datasets, except Bioassay. The UCI
Bioassay dataset is left out, because the metrics are directly retrieved from the literature, and we
cannot reproduce their predictions as we do not know their data split and parameter setups. Both
tests are conducted on AERs with log- and exp-likelihoods to verify the statistical significance of
their performance supremacy over other methods, including the cost-sensitive SVM, cost-sensitive
decision tree, focal loss neural network, LightGBM, and the plain and focal XGBoosts.

The McNemar’s test and Wilcoxon signed-rank test are non-parametric methods commonly
used in binary classification problems [61, 62]. The idea behind McNemar’s test is based on
verifying ’if the two approaches make mistakes on the same part of the sample’. The effectiveness
of the test in binary classification tasks was comprehensively discussed in [63]. The Wilcoxon
signed-rank test is motivated by Student’s T-test for paired samples, and it is utilized to verify if
the difference between the pairs follows a symmetric distribution around zero. The ranked nature
of Wilcoxon test makes it ideal for verifying classification results [64]. The tests are implemented
based on the Statsmodels package in Python [65]. For each test, the χ2 statistics and the p-values
are reported together with possibility of successfully rejecting the null hypothesis.

6 Experimental Analysis: the Results and Discussions
In this section, we present and analyze the experimental results of the proposed AER method.
As introduced in section 5.1 and section 5.2, seven compared methods are implemented on twelve
imbalanced datasets. Limited by space, UCI Bioassay and Abalone 19 datasets are selected for
primary demonstration, including the performance evaluation of AER with respect to the change of
related parameters, also a comprehensive table illustrating performance comparison between AER
and other methods. For GMM-generated data with various informative feature number and the
rest five UCI imbalanced dataset, we provide the results with compared methods. Two statistical
tests: McNemar’s test and Wilcoxon test are applied to all datasets.

6.1 UCI Bioassay
In the experiment, the number of Gaussian centroids for the AER is chosen from a set of {7, 8, 9}.
After performing validation with the minimum BIC value based on equation 4, the final number
of Gaussian centroids is optimized as 8. This leads to the total number of base classifiers being 16,
of which the first eight are trained on the majority-dominating subsets; the rest of them are fitted
with the nearly balanced subsets.

The distribution of the trained weights is plotted in Figure 2 (rounded to two decimals places, for
the convenience of plotting). From the figure, we can see that the classifiers trained on the majority-
dominated data generally have larger weights (with larger values and darker colors) because these

14

Figure 2: The trained weights of the algorithm for UCI Bioassay data (round to 2 decimals). The
first 8 weights corresponding to XGBoost classifiers are trained on majority-dominated subset,
while the later 8 are fitted on nearly label-balanced subsets.

Figure 3: The performance of the overall algorithm with respect to the change of the interpolation
parameter λ in the equation 19 on the UCI Bioassay dataset. Log likelihood is adopted to
compute the likelihood of each test data.

classifiers better represent the global geometry. Nevertheless, the weights from the balanced dataset
also have indisputable influences on the overall prediction.

The grid search results of the different values of the interpolation parameter λ are shown in
Figures 3 and 4. The unit measurement of the λ is 0.05, and λ = 1 indicates that the system
only relies on the learned weight vector; which λ = 0 indicates that the model solely depends on
trained coefficients. From the curve, it can be found that neither of the above setups will yield
results as good as the interpolated model, which further demonstrates the effectiveness of the AER
framework. In addition, Table 3 shows that the optimal λ obtained by the validation data is close
to the ‘real’ optimal λ, based on the test data.

After obtaining the optimal values of λ, one can examine the optimal value of δ in Equation 20,
based on the training or validation data. With the selection metric stated above, for this dataset,
the difference between the average log-likelihoods of the validation and testing data is 1602.56, and
the same metric between the training and testing data is 8663.5. Therefore, the validation data
is selected to determine δ. With the interpolation parameter in Table 3, the performance, with

Figure 4: The performances of the overall algorithm with respect to the change of the interpolation
parameter λ in Equation 19 on the UCI Bioassay dataset. Exponential likelihood is adopted to
compute the likelihood of each test data.

15

Table 3: The comparison between validation-based and true testing optimal λ on the UCI
Bioassay dataset.

Validation optimal
λ

Corresponding test
balanced-accuracy

Optimal test
balanced-accuracy

Log-likelihood 0.25 0.8217 0.8294
Exp-likelihood 0.15 0.8669 0.8698

Figure 5: The performances of the proposed dynamic ensemble algorithm with respect to the change
of the threshold parameter δ in Equation 20 on the UCI Bioassay dataset. Log likelihood is
adopted to compute the likelihood of each test data.

respect to the changing value of δ is illustrated in Figures 5 and 6.
The optimal δ value, based on the validation data, is 0.35 for the log-likelihood AER, and 0.30

for the exp-likelihood AER. The selection of the parameter shows that the overall algorithm favors
spotting the majority instances over minority samples, as the optimal δ values under both settings
are less than 0.5. However, given the condition that the minority instances are sparse in the
validation and test sets, the results are satisfactory. To provide some further insights, the statistics
of the F1 score and G-Mean are given in Figures 7 and 8. The figures denote the change in the F1
score and G-mean metrics for different δ values with the log- and exp- likelihoods, respectively.

Finally, Table 4 illustrates the performances of the comparison methods mentioned earlier and
the AER-XGBoost method with both log- and exp-likelihoods. From Table 4, it can be observed
that the AER-XGBoost algorithm yields a superior performance, based on multiple metrics. The
exp-likelihood-based adaptive ensemble method can yield the best balanced accuracy, and its log-

Figure 6: The performances of the proposed dynamic ensemble algorithm with respect to the
change of the threshold parameter δ in Equation 20 on the UCI Bioassay dataset. Exponential
likelihood is adopted to compute the likelihood of each test data.

16

Figure 7: Change in F1 score and G-mean of the minority data with respect to the changing value
of δ in Equation 20 on the UCI Bioassay dataset. Log likelihood is adopted to compute the
likelihood of each test data.

Figure 8: Change in F1 score and G-mean of the minority data with respect to the changing value
of δ in Equation 20 on the UCI Bioassay dataset. Exponential likelihood is adopted to compute
the likelihood of each test data.

likelihood counterpart yields a better TP-FP ratio, because of a stronger capability in spotting
majority instances. Among the compared methods, it can be observed that the focal loss neural

Figure 9: Performance of the proposed dynamic ensemble algorithm with respect to changes in the
threshold parameter δ in Equation 20 on the Abalone 19 dataset. Log likelihood is adopted to
compute the likelihood of each test data.

17

network and LightGBM models cannot learn anything meaningful, and a plausible reason for this
is that these models tend to overfit, especially when the dataset is small. The XGBoost and focal-
XGBoost [17] demonstrate the strongest performance among the non-AER models. Nevertheless,
we find that in the plot of the change in performance, with respect to δ, the range of δ leading
to a competent performance is quite restricted, which means its performance declines drastically,
as δ is slightly larger/smaller than the desired range. This problem is much less significant in the
AER models, as we can observe from Figures 5 and 6.

6.2 Abalone 19 Data
The candidate list of the number of Gaussian distributions for the Abalone 19 Dataset is set to
{11, 12, 13}, and the number 12 is retrieved through the BIC criteria. The optimal λ is determined
as 0.15 for the log-likelihood, and 0.20 for the exp-likelihood. Further, we again select the δ values
that guarantee the optimal performance on the validation set as the “determined threshold.” The
δ value AER models on the Abalone data is 0.75 for the log-likelihood, and 0.675 for the exp-
likelihood. The performance, with respect to the changes in the δ values, is given in Figures 9 and
10.

All the methods mentioned in the previous experiment are implemented under the context of
the Abalone 19 dataset. Because we no longer retrieve the performance from other literature, the
decision tree model is implemented with the SK-learn CART decision tree (almost identical to C4.5
for classification problems), and the SVM model is fine-tuned using the best kernel among linear,

Figure 10: Performances of the proposed dynamic ensemble algorithm with respect to changes in
the threshold parameter δ in Equation 20 on the Abalone 19 dataset. Exponential likelihood is
adopted to compute the likelihood of each test data.

Figure 11: Performance of the proposed dynamic ensemble algorithm with respect to changes in
the threshold parameter δ in Equation 20 on the GMM-generated dataset. Log likelihood is
adopted to compute the likelihood of each test data.

18

Figure 12: Performances of the proposed dynamic ensemble algorithm with respect to changes
in the threshold parameter δ in Equation 20 on the GMM-generated dataset. Exponential
likelihood is adopted to compute the likelihood of each test data.

Table 4: Comparison between the performance of different algorithms on the UCI Bioassay
dataset.

Minority
Recall

Majority
Recall

TP-FP
Ratio

F1
score

G-
mean

Balanced
Accuracy

Cost-sensitive SVM 75.00% 84.93% 5.0238 0.1224 0.2236 79.97%
Cost-sensitive Decision Tree 75.00% 85.16% 5.1048 0.1241 0.2253 80.08%
Focal loss neural network 0 100% – – – 50.00%
LightGBM 0 100% – – – 50.00%
Plain XGBoost 83.33% 0.47% 0.8373 0.0232 0.0990 41.90%
Focal-loss XGBoost 83.33% 78.19% 3.8225 0.0971 0.2073 80.77%
Dynamic Ensemble (log) 83.33% 0.47% 0.8373 0.0232 0.0990 41.90%
Dynamic Ensemble (exp) 83.33% 78.19% 3.8225 0.0971 0.2073 80.77%
AER-XGBoost (Log) 75.00% 89.34% 7.0333 0.1622 0.2611 82.16%
AER-XGBoost (Exp) 83.33% 87.33% 6.5732 0.1550 0.2668 85.33%

RBF and Polynomial. The γ parameter for the focal-XGBoost and the focal loss neural network
are obtained via a validation grid search, and the final values are set to 2.5 and 3.0.

Table 5 reports the performances of the AER and the compared methods. From the table, it can
be observed that the AER method (AER-XGBoost with both log- and exp-likelihoods) outperforms
existing algorithms, in terms of the balanced accuracy and G-mean score on the Abalone 19 data.
The AER-XGBoost with the exponential likelihood has a lower balanced accuracy, because of
a relatively lower recall on minority instances; however, it is still higher than those of existing
methods. On this dataset, the vanilla XGBoost, the focal loss neural network, and the LightGBM
models all scramble to learn anything useful. The performances of the cost-sensitive SVM and
decision tree are better than random guess, but still far from satisfactory. Once again, the focal-
XGBoost exhibits a relatively competitive performance, although it is still inferior to the AER-
XGBoost methods. It can be observed that the multiple entries in the table are given as ’-’; this is
because one or more metrics of the method is out of the ordinary range, which results in ridiculously
high/low or even inf or Nan results.

Another interesting perspective offered by the table is the comparison between the vanilla
XGBoost (the base classifier used in the AER method) and the advanced methods based on it
(including the focal loss proposed in [17] and the AER method proposed in this study). It can be
observed that the plain XGBoost method performs poorly at this specific task, with a significant
bias toward the minority data, and failure at spotting the majority instances. The focal loss and
AER can be regarded as two ·approaches to improving the performance, and the AER is superior,
in terms of the overall performance.

Finally, Tables 6 and 7 demonstrate the results of the Mcnemar’s and Wilcoxon tests, to reveal
the significance of the performance superiority of the AER models. From the tables, it can be

19

Table 5: The comparison between the performance of different algorithms on Abalone 19
dataset.

Minority
Recall

Majority
Recall

TP-FP
Ratio

F1
score

G-
mean

Balanced
Accuracy

Cost-sensitive SVM 28.57% 88.66% 2.5198 0.0388 0.0772 58.62%
Cost-sensitive Decision Tree 14.29% 99.64% – 0.1818 0.1889 56.96%
Focal loss neural network 0 100% – – – 50.00%
LightGBM 0 100% – – – 50.00%
Plain XGBoost 100% 0.12% 1.0012 0.0166 0.0916 50.06%
Focal-loss XGBoost 42.86% 85.52% 2.9607 0.0462 0.1022 64.19%
Dynamic Ensemble (log) 57.14% 86.61% 4.2677 0.0656 0.1410 71.88%
Dynamic Ensemble (exp) 57.14% 86.61% 4.2677 0.0656 0.1410 71.88%
AER-XGBoost (Log) 85.71% 83.96% 5.3426 0.082 0.1924 84.83%
AER-XGBoost (Exp) 57.14% 88.90% 5.1491 0.0777 0.1543 73.02%

Table 6: McNemar’s test for Log- and Exp-likelihood AERs against existing methods on the
Abalone 19 dataset(α = 0.05)

.

χ2 statistics p-value Null Hypothesis
Log-likelihood AER
Cost-sensitive Decision Tree 112.23 < 0.01 Reject H0

Cost-sensitive SVM 11.68 < 0.01 Reject H0

Focal loss neural network 114.2 < 0.01 Reject H0

LightGBM 114.2 < 0.01 Reject H0

Dynamic Ensemble (log) 9.5 < 0.01 Reject H0

Plain XGBoost 113.22 < 0.01 Reject H0

Focal XGBoost 0.68 0.41 Failed to reject H0

Exp-likelihood AER
Cost-sensitive Decision Tree 75.26 < 0.01 Reject H0

Cost-sensitive SVM 0.08 0.77 Failed to reject H0

Focal loss neural network 114.2 < 0.01 Reject H0

LightGBM 114.2 < 0.01 Reject H0

Dynamic Ensemble (exp) 4.3 0.04 Reject H0

Plain XGBoost 4.0 < 0.01 Reject H0

Focal XGBoost 54.0 0.02 Reject H0

20

Table 7: Wilcoxon test for Log- and Exp-likelihood AERs against existing methods on the
Abalone 19 dataset(α = 0.05)

.

χ2 statistics p-value Null Hypothesis
Log-likelihood AER
Cost-sensitive Decision Tree 274.0 < 0.01 Reject H0

Cost-sensitive SVM 4402.0 0.15 Failed to reject H0

Focal loss neural network 0 < 0.01 Reject H0

Light GBM 0 < 0.01 Reject H0

Dynamic Ensemble (log) 136.5 < 0.01 Reject H0

Plain XGBoost 0 < 0.01 Reject H0

Focal XGBoost 3146.0 0.14 Failed to reject H0

Exp-likelihood AER
Cost-sensitive Decision Tree 188.0 < 0.01 Reject H0

Cost-sensitive SVM 2331.0 0.01 Reject H0

Focal loss neural network 0 < 0.01 Reject H0

LightGBM 0 < 0.01 Reject H0

Dynamic Ensemble (exp) 1064.0 0.03 Reject H0

Plain XGBoost 0 < 0.01 Reject H0

Focal XGBoost 3795.0 0.02 Reject H0

observed that the preferable performances of the AER models are corroborated by both tests in
most cases. The null hypothesis between the logarithm-based AER-XGBoost and the focal-loss
XGBoost is relatively hard to reject (p ≥ 0.01 for both tests), confirming the strong performance
of the widely favored method. It is interesting that, for the SVM method, we failed to reject the
null hypothesis for the exp-AER under the McNemar’s test and the log-AER under the Wilcoxon
test. Such observations are not made elsewhere in the experiments. Thus, the problem in these
specific datasets could stem from the specific training/testing split pairs.

6.3 GMM-generated Data and Variations
For the GMM-generated data, we first present the results on the 9-center GMM-based set. For this
model, the number of candidate Gaussian centroids is listed as {8, 9, 10}, and the 9-centroid model
is finally determined, which is consistent with the generative distribution of the data. The optimal
λ is determined as 0.60 for the log-likelihood, and 0.30 for the exp-likelihood. The validation set
is selected to determine the value of δ, and the performance, with respect to a varying δ value can
be shown in Figures 11 and 12 for the log- and exp-likelihood methods respectively.

Similar to the previous experiments, the two types of the AER models and the methods of
comparisons, including the cost-sensitive SVM and cost-sensitive decision tree, focal loss neural
network, LightGBM, and the vanilla and focal-loss XGBoost models, are tested on the 9-center
GMM dataset. The results are summarized in Table 8. From the table, it can be found that only
the cost-sensitive decision tree, focal-loss XGBoost, and the AER methods can grasp useful infor-
mation, whereas other methods failed at learning more than some random classification boundaries.
These results are consistent with what we have discussed earlier; the classification of the minority
data is very hard to learn, because the 100 samples come from nine different Gaussian distribu-
tions. Nevertheless, with the AER methods, especially under the setup of the exp-likelihood, the
model can maintain a relatively good performance. The results in Table 8 indicates that if the
data manifold really conforms to the GMM, the AER-XGBoost method can serve as a powerful
learner that extracts information from the highly complicated manifold, where most of the other
models will fail.

The results of the hypothetical test on 9-center GMM data, together with the performances and
the testing results on other variations of the GMM-generated data, are given in Table 9. From the
table, it can be observed that the AER method consistently outperforms all the compared methods,
with a considerable margin. Moreover, both statistical hypothesis tests support the significance
of the performance superiority. The exp-likelihood-based AER performs better on the hypothesis
tests, indicating that this type of AER method can distinguish its predictions from that of other
models more effectively.

21

Table 8: The comparison between the performance of different algorithms on the 9-center
GMM-generated data.

Minority
Recall

Majority
Recall

TP-FP
Ratio

F1
score

G-
mean

Balanced
Accuracy

Cost-sensitive SVM 0% 100% – – – 50.00%
Cost-sensitive Decision Tree 5.03% 99.18% 6.0769 0.0588 0.0598 52.09%
Focal loss neural network 0 100% – – – 50.00%
LightGBM 0 100% – – – 50.00%
Plain XGBoost 100% 0.063% 1.0006 – – 50.03%
Focal-loss XGBoost 25.00% 84.49% 1.6122 0.0370 0.0707 54.74%
Dynamic Ensemble (log) 83.33% 0.47% 0.8373 0.0132 0.0195 48.35%
Dynamic Ensemble (exp) 83.33% 78.19% 3.8225 0.0132 0.0195 48.35%
AER-XGBoost (Log) 30.00% 86.58% 2.2358 0.0504 0.0909 58.29%
AER-XGBoost (Exp) 20.00% 95.06% 4.0513 0.0743 0.0988 57.53%

6.4 Other UCI Imbalanced Datasets
Tables 10-24 show the results of performance and statistical hypothesis tests for five other UCI
datasets, namely Ecoli, US Crime, Wine Quality, Scene, and Car Eval. The characteristics
of these datasets have been discussed in Section 5.1 and Table 2. It can be observed that, compared
with the three datasets we discussed earlier, these five datasets have considerably less imbalanced
ratio. Therefore, the advantages of the AER-XGBoost model in this context are not as significant
as in the above experiments. Nevertheless, they can still serve as powerful proofs of the effectiveness
of the AER models.

Tables 10-12 illustrate the performances and the results of the statistical tests on the Ecoli
data. From the tables, it can be found that the AER model does not outperform the recent
novel methods (e.g. Light GBM, XGBoost, and focal-XGBoost), although it is better than the
conventional algorithms (e.g. SVM and decision tree). The inadequacy of the performance can be
partially explained by the lower imbalance rate, which compromises the AER’s specialization in
processing imbalanced data, and prompts some recent general-purpose methods to unleash their
abilities in handling ordinary datasets. Regardless of the performances in comparison to the other
methods, the comparison with pure dynamic ensemble still validates the effectiveness of the AER
framework. Furthermore, both types of statistical hypothesis tests suggest that the difference
between the prediction of the AER-XGBoost and other methods is significant, to reject the null
hypothesis in most of the cases.

Tables 13-15 demonstrate the experimental results on the US Crime data. The performances in
Table 13 further demonstrate the advantages of the AER models, which outperform the classical
models (SVM and decision tree) by a large margin, and achieve better scores than recent models
such as the LightGBM, XGBoost and focal-XGBoost. The comparisons of the AER models with
their pure likelihood-based (unregularized) counterparts also demonstrate the effectiveness of the
regularization property. Furthermore, Tables 14 and 15 show the results of the hypothesis tests.
Both tests suggest that the upper-hand performance superiority of the exponential-based AER-
XGBoost is deemed significant. The logarithm-based AER-XGBoost performs relatively badly on
the Mcnamar’s test; however, the same results on the Wilcoxon test are mostly positive, suggesting
that the failure of the Mcnamar’s test can be attributed to the nature of the dataset.

The third dataset we tested the models on is the famous Wine Quality dataset, and the results
are presented in Tables 16-18. From Table 16, it can be observed that apart from the classical
methods (SVM and decision tree), the performance of the AER is roughly in the same range as
those of the other recent and advanced models. One exception is the focal-XGBoost, which scores
81.75% in terms of balanced accuracy. However, this score can be attributed to the fact that it
compromises the classification of the majority data, which also leads to lower F1 and G-mean
scores. In addition to the performances, the results in Table 17 suggest that the Mcnemar’s tests
reject the Null hypothesis for all but three models, namely the cost-sensitive decision trees, focal
loss neural network, and LightGBM. It may be observed that the results of the focal loss neural
network and LightGBM are almost “all-majority” prediction; therefore, we can safely conclude that
the failure of rejection is attributable to the imbalanced nature of the dataset. Furthermore, the
results in Table 18 suggest the Wilcoxon tests reject almost all the null hypotheses.

22

Table 9: Results on the GMM-generated datasets with different number of informative
features.

F1 Score G-mean Balanced
Accuracy

(Wilcoxon)H0

Log-AER-
XGBoost

(Wilcoxon)H0

Exp-AER-
XGBoost

(Mcnemar)H0

Log-AER-
XGBoost

(Mcnemar)H0

Exp-AER-
XGBoost

Informative Feature Number ninformative = 8
Cost-sensitive Decision Tree 0.0816 0.0830 54.15% Reject Reject Reject Reject
Cost-sensitive SVM – – 50.00% Reject Reject Reject Reject
Focal loss neural network 0.005 0.0625 50.00% Reject Reject Reject Reject
LightGBM – – 50.00% Reject Reject Reject Reject
Plain XGBoost 0.0693 0.1160 61.96% Failed Reject Reject Failed Reject Reject
Focal XGBoost 0.0344 0.1186 61.74% Reject Reject Reject Reject
Dynamic Ensemble (log) 0.0653 0.1193 63.13 % Reject – Reject –
Dynamic Ensemble (exp) 0.0653 0.1193 63.13 % – Reject – Reject
Log-AER-XGBoost 0.0707 0.1173 62.09% – – – –
Exp-AER-XGBoost 0.1159 0.1647 66.52% – – – –
Informative Feature Number ninformative = 9
Cost-sensitive Decision Tree 0.0588 0.0598 52.09% Reject Reject Reject Reject
Cost-sensitive SVM – – 50.00% Reject Reject Reject Reject
Focal loss neural network 0.0114 0.0115 50.00% Reject Reject Reject Reject
LightGBM – – 50.00% Reject Reject Reject Reject
Plain XGBoost – – 50.03% Reject Reject Reject Reject
Focal XGBoost 0.0370 0.0707 54.74% Reject Reject Failed Reject Reject
Dynamic Ensemble (log) 0.0132 0.0195 48.39 % Reject – Reject –
Dynamic Ensemble (exp) 0.0132 0.0195 48.39 % – Reject – Reject
Log-AER-XGBoost 0.0504 0.0909 58.29% – – – –
Exp-AER-XGBoost 0.0743 0.0988 57.53% – – – –
Informative Feature Number ninformative = 10
Cost-sensitive Decision Tree 0.1176 0.1195 54.62% Reject Reject Reject Reject
Cost-sensitive SVM – – 50.00% Reject Reject Reject Reject
Focal loss neural network 0.0179 0.0198 50.00% Reject Reject Reject Reject
LightGBM 0.0952 0.2236 50.00% Reject Reject Reject Reject
Plain XGBoost 0.0629 0.0948 58.26% Failed Reject Reject Failed Reject Reject
Focal XGBoost 0.1091 0.1134 56.49% Reject Failed Reject Reject Failed Reject
Dynamic Ensemble (log) 0.0596 0.1067 60.92 % Reject – Reject –
Dynamic Ensemble (exp) 0.0596 0.1067 60.92 % – Reject – Reject
Log-AER-XGBoost 0.1032 0.1540 65.98% – – – –
Exp-AER-XGBoost 0.1684 0.2066 67.88% – – – –
Informative Feature Number ninformative = 11
Cost-sensitive Decision Tree – 0.0 49.36% Reject Reject Reject Reject
Cost-sensitive SVM – – 50.00% Reject Reject Reject Reject
Focal loss neural network 0.0146 0.0148 50.00% Reject Reject Reject Reject
LightGBM – – 50.00% Reject Reject Reject Reject
Plain XGBoost 0.0397 0.0586 53.44% Reject Reject Reject Reject
Focal XGBoost 0.0388 0.0656 54.24% Failed Reject Reject Failed Reject Reject
Dynamic Ensemble (log) 0.0690 0.1 58.70 % Reject – Reject –
Dynamic Ensemble (exp) 0.0448 0.0785 56.23 % – Reject – Reject
Log-AER-XGBoost 0.0863 0.1230 61.42% – – – –
Exp-AER-XGBoost 0.1522 0.1845 65.44% – – – –
Informative Feature Number ninformative = 12
Cost-sensitive Decision Tree – 0.00 49.43% Reject Reject Reject Reject
Cost-sensitive SVM – – 50.00% Reject Reject Reject Reject
Cost-sensitive Network 0.0128 0.0128 50.00% Reject Reject Reject Reject
LightGBM – – 50.00% Reject Reject Reject Reject
Plain XGBoost 0.0410 0.0747 55.57% Reject Reject Reject Reject
Focal XGBoost 0.0800 0.1000 52.37% Reject Reject Reject Reject
Dynamic Ensemble (log) 0.0339 0.0452 51.96 % Reject – Failed Reject –
Dynamic Ensemble (exp) 0.0516 0.0770 55.85 % – Failed Reject – Failed Reject
Log-AER-XGBoost 0.0662 0.0977 58.51% – – – –
Exp-AER-XGBoost 0.1687 0.1972 65.72% – – – –

Th Scene dataset, as mentioned earlier, has richer information, with a greater number of fea-
tures. The results in Table 19 reveal that the advantages of the AER model are more compelling
in this type of scenario. We can observe from the table that the performance of AER-XGBoosts
is significantly better than that of the other models, including the classical ones and the recently
developed ones. Once more, the vanilla and focal XGBoost models yield relatively more satisfac-
tory performances, as they are the only models that can compete against the AER models. The
improvements in the performance of the AER over the pure dynamic ensemble further demon-
strates the positive impact of regularization on the dynamic ensemble, especially when the data

23

Table 10: The comparison between the performance of different algorithms on the Ecoli data.

Minority
Recall

Majority
Recall

TP-FP
Ratio

F1
score

G-
mean

Balanced
Accuracy

Cost-sensitive SVM 75% 92.19% 9.6 0.5 0.5303 83.59%
Cost-sensitive Decision Tree 50% 98.44% 32.0 0.5714 0.5774 74.22%
Focal loss neural network 0 100% – – – 50.00%
LightGBM 75.00% 98.44% 48.0 0.75 0.75 86.72%
XGBoost 100% 84.38% 6.4 0.4444 0.5345 92.19%
Focal-loss XGBoost 75.00% 98.44% 48.0 0.75 0.75 86.72%
Dynamic Ensemble (Log) 75.00% 92.19% 9.6 0.5 0.5303 83.59%
Dynamic Ensemble (Exp) 75.00% 85.94% 5.3 0.375 0.433 80.47%
AER-XGBoost (Log) 75.00% 92.19% 9.6 0.5 0.5303 83.59%
AER-XGBoost (Exp) 75.00% 93.75% 12.0 0.5455 0.5669 84.38%

Table 11: McNemar’s test for Log- and Exp-likelihood AERs against existing methods on the
Ecoli dataset(α = 0.05)

.

χ2 statistics p-value Null Hypothesis
Log-likelihood AER
Cost-sensitive Decision Tree 4.17 < 0.01 Reject H0

Cost-sensitive SVM 0.5 0.48 Failed to Reject H0

Focal loss neural network 4.17 < 0.01 Reject H0

LightGBM 4.17 < 0.01 Reject H0

Plain XGBoost 0.8 0.37 Failed to Reject H0

Focal XGBoost 4.17 < 0.01 Reject H0

Dynamic Ensemble (log) 0.0 1.0 Failed to Reject H0

Exp-likelihood AER
Cost-sensitive Decision Tree 19.36 < 0.01 Reject H0

Cost-sensitive SVM 15.43 < 0.01 Reject H0

Focal loss neural network 4.17 < 0.01 Reject H0

LightGBM 4.17 < 0.01 Reject H0

Plain XGBoost 12.07 < 0.01 Reject H0

Focal XGBoost 19.36 < 0.01 Reject H0

Dynamic Ensemble (exp) 11.53 < 0.01 Reject H0

information is rich. Additionally, the results in Tables 20 and 21 give valid statistical testing
results.

Finally, Tables 22-24 present the performances and results of the statistical tests on the Car
Eval dataset. It can be observed that, as the dataset is relatively easy to learn (small size and low
imbalance rate), almost all the models can yield good performance. Nevertheless, the AER-based
models still yield better overall performances. It is also noticeable that, because the dataset is
small, the dynamic ensemble without regularization can only offer performances comparable with
classical methods, and the performances increase drastically after the introduction of regularization.
In addition, the results of the hypothesis tests in Tables 23 and 24 suggest the differences in the
predictions are significant.

24

Table 12: Wilcoxon test for Log- and Exp-likelihood AERs against existing methods on the Ecoli
dataset(α = 0.05)

.

χ2 statistics p-value Null Hypothesis
Log-likelihood AER
Cost-sensitive Decision Tree 0 0.01 Reject H0

Cost-sensitive SVM 0 0.16 Failed to reject H0

Focal loss neural network 0 0.01 Reject H0

Light GBM 0 0.01 Reject H0

Plain XGBoost 0 0.02 Reject H0

Focal XGBoost 0 0.01 Reject H0

Dynamic Ensemble (log) 6.0 0.65 Failed to reject H0

Exp-likelihood AER
Cost-sensitive Decision Tree 0 < 0.01 Reject H0

Cost-sensitive SVM 0 < 0.01 Reject H0

Focal loss neural network 0 < 0.01 Reject H0

Light GBM 0 < 0.01 Reject H0

Plain XGBoost 0 < 0.01 Reject H0

Focal XGBoost 0 < 0.01 Reject H0

Dynamic Ensemble (exp) 0 < 0.01 Reject H0

Table 13: The comparison between the performance of different algorithms on the US Crime
data.

Minority
Recall

Majority
Recall

TP-FP
Ratio

F1
score

G-
mean

Balanced
Accuracy

Cost-sensitive SVM 42.86% 94.71% 8.1 0.36 0.3647 68.78%
Cost-sensitive Decision Tree 42.86% 96.83% 13.5 0.4286 0.4286 69.84%
Focal loss neural network 1.75% 98.25% 1.0 0.0263 0.0304 50.00%
LightGBM 28.57% 98.68% 21.60 0.3750 0.3948 63.62%
XGBoost 57.14% 94.71% 10.8 0.4528 0.4629 75.93%
Focal-loss XGBoost 57.14% 94.44% 10.3 0.4444 0.4558 75.79%
Dynamic Ensemble (Log) 71.43% 91.53% 8.4 0.4412 0.4775 81.48%
Dynamic Ensemble (Exp) 90.48% 85.45% 6.2 0.4 0.4820 87.96%
AER-XGBoost (Log) 71.437% 91.80% 8.7 0.4478 0.4826 81.61%
AER-XGBoost (Exp) 90.48% 87.83% 7.4 0.4419 0.5143 89.15%

Table 14: McNemar’s test for Log- and Exp-likelihood AERs against existing methods on the US
Crime dataset(α = 0.05)

.

χ2 statistics p-value Null Hypothesis
Log-likelihood AER
Cost-sensitive Decision Tree 1.64 0.2 Failed to Reject H0

Cost-sensitive SVM 0.59 0.44 Failed to Reject H0

Focal loss neural network 6.92 < 0.01 Reject H0

LightGBM 6.92 < 0.01 Reject H0

Plain XGBoost 2.27 0.14 Failed to Reject H0

Focal XGBoost 1.71 0.19 Failed to Reject H0

Dynamic Ensemble (log) 0.14 0.71 Failed to Reject H0

Exp-likelihood AER
Cost-sensitive Decision Tree 236.9 < 0.01 Reject H0

Cost-sensitive SVM 236.2 < 0.01 Reject H0

Focal loss neural network 0.64 0.42 Failed to Reject H0

LightGBM 0.64 0.42 Failed to Reject H0

Plain XGBoost 246.0 < 0.01 Reject H0

Focal XGBoost 245.0 < 0.01 Reject H0

Dynamic Ensemble (exp) 241.3 < 0.01 Reject H0

25

Table 15: Wilcoxon test for Log- and Exp-likelihood AERs against existing methods on the US
Crime dataset(α = 0.05)

.

χ2 statistics p-value Null Hypothesis
Log-likelihood AER
Cost-sensitive Decision Tree 115.0 0.67 Failed to Reject H0

Cost-sensitive SVM 47.5 0.06 Failed to Reject H0

Focal loss neural network 7.5 < 0.01 Reject H0

Light GBM 7.5 < 0.01 Reject H0

Plain XGBoost 55.0 0.02 Reject H0

Focal XGBoost 42.0 < 0.01 Reject H0

Dynamic Ensemble (log) 107.5 < 0.01 Reject H0

Exp-likelihood AER
Cost-sensitiveDecision Tree 294.0 < 0.01 Reject H0

Cost-sensitive SVM 0 < 0.01 Reject H0

Focal loss neural network 0 < 0.01 Reject H0

Light GBM 0 < 0.01 Reject H0

Plain XGBoost 0 < 0.01 Reject H0

Focal XGBoost 0 < 0.01 Reject H0

Dynamic Ensemble (exp) 0 < 0.01 Reject H0

Table 16: The comparison between the performance of different algorithms on the Wine
Quality data.

Minority
Recall

Majority
Recall

TP-FP
Ratio

F1
score

G-
mean

Balanced
Accuracy

Cost-sensitive SVM 60% 81.26% 3.2 0.1593 0.2347 70.63%
Cost-sensitive Decision Tree 23.33% 98.32% 13.85 0.2642 0.2665 60.82%
Focal loss neural network 1.94% 98.06% 1.0 0.0237 0.0244 50.00%
LightGBM 10.00% 99.37% 15.83 0.1538 0.1826 54.68%
XGBoost 60% 92.21% 7.7 0.2951 0.3426 76.11%
Focal-loss XGBoost 76.67% 86.84% 5.83 0.2584 0.3452 81.75%
Dynamic Ensemble (Log) 56.67% 92.00% 7.1 0.2764 0.3218 74.33%
Dynamic Ensemble (Exp) 60% 88.42% 5.2 0.2278 0.2904 74.21%
AER-XGBoost (Log) 56.67% 91.89% 7.0 0.2742 0.3201 74.28%
AER-XGBoost (Exp) 66.67% 91.05% 7.5 0.2963 0.3563 78.86%

Table 17: McNemar’s test for Log- and Exp-likelihood AERs against existing methods on the
Wine Quality dataset(α = 0.05)

.

χ2 statistics p-value Null Hypothesis
Log-likelihood AER
Cost-sensitive Decision Tree 0.13 0.72 Failed to Reject H0

Cost-sensitive SVM 133.0 < 0.01 Reject H0

Focal loss neural network 0.24 0.63 Failed to Reject H0

LightGBM 0.24 0.63 Failed to Reject H0

Plain XGBoost 33.3 < 0.01 Reject H0

Focal XGBoost 68.4 < 0.01 Reject H0

Dynamic Ensemble (log) 5.6 0.01 Reject H0

Exp-likelihood AER
Cost-sensitive Decision Tree 3.52 0.06 Failed to Reject H0

Cost-sensitive SVM 116.3 < 0.01 Reject H0

Focal loss neural network 0.24 0.63 Failed to Reject H0

LightGBM 0.24 0.63 Failed to Reject H0

Plain XGBoost 14.0 < 0.01 Reject H0

Focal XGBoost 53.8 < 0.01 Reject H0

Dynamic Ensemble (exp) 55.7 < 0.01 Reject H0

26

Table 18: Wilcoxon test for Log- and Exp-likelihood AERs against existing methods on the
Wine Quality dataset(α = 0.05)

.

χ2 statistics p-value Null Hypothesis
Log-likelihood AER
Cost-sensitive Decision Tree 240.0 0.86 Failed to Reject H0

Cost-sensitive SVM 88.5 < 0.01 Reject H0

Focal loss neural network 18.0 < 0.01 Reject H0

Light GBM 18.0 < 0.01 Reject H0

Plain XGBoost 36. < 0.01 Reject H0

Focal XGBoost 199.5 < 0.01 Reject H0

Dynamic Ensemble (log) 126.0 < 0.01 Reject H0

Exp-likelihood AER
Cost-sensitive Decision Tree 318.5 < 0.01 Reject H0

Cost-sensitive SVM 320.0 < 0.01 Reject H0

Focal loss neural network 19.5 < 0.01 Reject H0

Light GBM 19.5 < 0.01 Reject H0

Plain XGBoost 481.0 < 0.01 Reject H0

Focal XGBoost 285.0 < 0.01 Reject H0

Dynamic Ensemble(exp) 0 < 0.01 Reject H0

Table 19: The comparison between the performance of different algorithms on the Scene data.

Minority
Recall

Majority
Recall

TP-FP
Ratio

F1
score

G-
mean

Balanced
Accuracy

Cost-sensitive SVM 26.67% 96.24% 7.1 0.2909 0.2921 61.45%
Cost-sensitive Decision Tree 20.00% 91.59% 2.38 0.1622 0.1651 55.80%
Focal loss neural network 0% 100% – – – 50.00%
LightGBM 3.33% 100% – 0.0645 0.1826 51.67%
XGBoost 66.67% 72.35% 2.4 0.2286 0.3032 69.51%
Focal-loss XGBoost 66.67% 73.23% 2.5 0.2339 0.3075 66.95%
Dynamic Ensemble (Log) 43.33% 91.37% 5.02 0.3171 0.3291 67.35%
Dynamic Ensemble (Exp) 83.33% 41.15% 1.4 0.1558 0.2676 62.24%
AER-XGBoost (Log) 53.33% 89.82% 5.2 0.3478 0.3710 71.58%
AER-XGBoost (Exp) 66.67% 76.33% 2.8 0.2548 0.3240 71.50%

Table 20: McNemar’s test for Log- and Exp-likelihood AERs against existing methods on the
Scene dataset(α = 0.05)

.

χ2 statistics p-value Null Hypothesis
Log-likelihood AER
Cost-sensitive Decision Tree 96.9 < 0.01 Reject H0

Cost-sensitive SVM 114.3 < 0.01 Reject H0

Focal loss neural network 116.8 < 0.01 Reject H0

LightGBM 116.8 < 0.01 Reject H0

Plain XGBoost 16.5 < 0.01 Reject H0

Focal XGBoost 61.8 < 0.01 Reject H0

Dynamic Ensemble (log) 0.5 0.46 Failed to Reject H0

Exp-likelihood AER
Cost-sensitive Decision Tree 242.3 < 0.01 Reject H0

Cost-sensitive SVM 228.0 < 0.01 Reject H0

Focal loss neural network 116.8 < 0.01 Reject H0

LightGBM 116.8 < 0.01 Reject H0

Plain XGBoost 151.2 < 0.01 Reject H0

Focal XGBoost 119.7 < 0.01 Reject H0

Dynamic Ensemble (exp) 32.6 < 0.01 Reject H0

27

Table 21: Wilcoxon test for Log- and Exp-likelihood AERs against existing methods on Scene
dataset(α = 0.05)

.

χ2 statistics p-value Null Hypothesis
Log-likelihood AER
Cost-sensitive Decision Tree 756.0 < 0.01 Reject H0

Cost-sensitive SVM 227.5 < 0.01 Reject H0

Focal loss neural network 0 < 0.01 Reject H0

Light GBM 0 < 0.01 Reject H0

Plain XGBoost 1274.0 < 0.01 Reject H0

Focal XGBoost 1008.0 < 0.01 Reject H0

Dynamic Ensemble (log) 1820.0 < 0.29 Failed to Reject H0

Exp-likelihood AER
Cost-sensitive Decision Tree 474.0 < 0.01 Reject H0

Cost-sensitive SVM 320.0 < 0.01 Reject H0

Focal loss neural network 0 < 0.01 Reject H0

Light GBM 0 < 0.01 Reject H0

Plain XGBoost 796.0 < 0.01 Reject H0

Focal XGBoost 388.5 < 0.01 Reject H0

Dynamic Ensemble(exp) 264.0 < 0.01 Reject H0

Table 22: Comparison between the performance of different algorithms on the Car Eval data.

Minority
Recall

Majority
Recall

TP-FP
Ratio

F1
score

G-
mean

Balanced
Accuracy

Cost-sensitive SVM 89.29% 97.48% 35.5 0.8197 0.8224 93.38%
Cost-sensitive Decision Tree 82.14% 95.28% 17.4 0.6970 0.7051 88.71%
Focal loss neural network 0 100% – – – 50.00%
LightGBM 92.86% 97.17% 32.8 0.8254 0.8305 95.01%
XGBoost 100% 88.68% 8.8 0.6087 0.6614 94.34%
Focal-loss XGBoost 100% 87.42% 8.0 0.5833 0.6417 93.71%
Dynamic Ensemble (Log) 96.43% 97.17% 34.1 0.8438 0.8504 96.80%
Dynamic Ensemble (Exp) 92.86% 95.91% 22.7 0.7761 0.7868 94.38%
AER-XGBoost (Log) 92.88% 97.17% 32.8 0.8254 0.8305 95.01%
AER-XGBoost (Exp) 100% 95.91% 24.5 0.8116 0.8264 97.96%

Table 23: McNemar’s test for Log- and Exp-likelihood AERs against existing methods on the
Car Eval dataset(α = 0.05)

.

χ2 statistics p-value Null Hypothesis
Log-likelihood AER
Cost-sensitive Decision Tree 4.1 < 0.01 Reject H0

Cost-sensitive SVM 13.0 < 0.01 Reject H0

Focal loss neural network 14.1 < 0.01 Reject H0

LightGBM 14.1 < 0.01 Reject H0

Plain XGBoost 1.8 0.18 Failed to Reject H0

Focal XGBoost 3.4 0.07 Failed to Reject H0

Dynamic Ensemble(log) 8.5 < 0.01 Reject H0

Exp-likelihood AER
Cost-sensitive Decision Tree 325.1 < 0.01 Reject H0

Cost-sensitive SVM 312.2 < 0.01 Reject H0

Focal loss neural network 14.1 < 0.01 Reject H0

LightGBM 14.1 < 0.01 Reject H0

Plain XGBoost 304.0 < 0.01 Reject H0

Focal XGBoost 300.0 < 0.01 Reject H0

Dynamic Ensemble(exp) 321.1 < 0.01 Reject H0

28

Table 24: Wilcoxon test for Log- and Exp-likelihood AERs against existing methods on the Car
Eval dataset(α = 0.05)

.

χ2 statistics p-value Null Hypothesis
Log-likelihood AER
Cost-sensitive Decision Tree 0 < 0.01 Reject H0

Cost-sensitive SVM 0 < 0.01 Reject H0

Focal loss neural network 0 < 0.01 Reject H0

Light GBM 0 < 0.01 Reject H0

Plain XGBoost 30.0 0.11 Failed to Reject H0

Focal XGBoost 87.5 < 0.01 Reject H0

Dynamic Ensemble(exp) 0 < 0.01 Reject H0

Exp-likelihood AER
Cost-sensitive Decision Tree 0 < 0.01 Reject H0

Cost-sensitive SVM 0 < 0.01 Reject H0

Focal loss neural network 0 < 0.01 Reject H0

Light GBM 0 < 0.01 Reject H0

Plain XGBoost 0 < 0.01 Reject H0

Focal XGBoost 0 < 0.01 Reject H0

Dynamic Ensemble(exp) 0 < 0.01 Reject H0

29

7 Discussions
We dedicate this section to discussing the implications of the foregoing theoretical and empirical
analysis and the missing details in the experiments. Specifically, we want to discuss the following
aspects: 1. The effectiveness of the regularization; 2. The suitable problem for the AER and
the choice between logarithm- and exponential-based AERs; 3. The practical training time and
training dynamics of the AER; and 4. Natural improvements and extensions of the AER.

From the experiments in Section 6, it can be observed that the AER-XGBoost models (with
regularization) almost always outperform their pure dynamic ensemble counterparts in terms of
the balanced accuracy. The only notable exceptions are in Tables 5 and 8, where the unregularized
exp-based dynamic ensemble models achieve much better balanced accuracy. However, this “per-
formance flux” is at the cost of the majority recall, which results in low TP-FP ratios, and renders
the models practically inapplicable. Furthermore, for most of the statistical hypothesis tests, the
regularized AER-XGBoosts reject the prediction null hypothesis from their pure dynamic ensemble
counterparts. For the UCI Bioassay data, from Figures 3 and 4, it can be observed that the optimal
λ for the validation and testing sets is neither 0 nor 1, indicating that interpolating the likelihood-
based weights resulted in performance gain. The results on Abalone 19 and the GMM-generated
data reveal similar results, which can further support the above observation.

As we have discussed based on the experiments, the AER is best suitable for problems with
complex decision boundary and high imbalanced ratio. For instance, the performance of the
AER-XGBoost only offers competitive performances on the Ecoli dataset (imbalance ratio 1 : 8.6),
whereas it offers significantly state-of-the-art performances on the Abalone 19 data (imbalance ratio
1 : 129). Furthermore, from the observations, based on most of the experiments, the exponential
likelihood-based AERs are often the better ones. We believe this may be attributable to the
fact that they can benefit more from regularization. This can be explained by the fact that the
logarithm-based AERs have weights closer to uniform, whereas the weights of the exponential-based
AERs distribute more “sharply.” The major drawback of the exponential-based AER, compared
with the logarithm-based one, is that the range of choice for the “good” hyper-parameters is smaller.
Thus, we recommend using the logarithm-based AER models when we have no knowledge of the
relations between the training/validation and the test data, and using the exponential-based AER
when we know the data distribution between the training/validation and the test sets are similar.

We theoretically proved in Section 4 that the time and memory complexity of the models
implemented under the AER framework is better than the vanilla framework. In practice, we
observe that the running time for the AER-XGBoost is usually longer than expected. This can be
explained by two factors. The first factor is that the time complexity of the XGBoost does not fall
into the regime of polynomial time. Because the model includes parallelization during fitting, the
complexity introduced by the number of data becomes O(log(m)) (polylog) instead. In practice,
we do not expect this type of classifier very often, and if the parallelization technique is enabled,
we can also bring the GMM to parallel computing, to further improve the time complexity. The
second factor is that we do not implement diagonal approximations for the co-variance matrices
in the GMM models. Therefore, it takes O(n3) complexity to compute the matrix inverse and
multiplications (in contrast with the O(n) complexity using diagonal approximation). We employed
full co-variance matrices to illustrate the power of the AER model, and for real-life applications, it
is recommended that the diagonal approximation is used when the dimension (number of features)
of the data is large.

Some natural improvements and extensions will easily follow, if we apply the AER model, with
augmentation by other methods. For instance, we can change the distribution from the GMM
to a mixture of t-distributions, to obtain more robust modeling for the data [66]. The major
disadvantage of this strategy is the time complexity may change. In addition, some compression
methods, such as quantization [67], can help reduce the memory complexity on the bit-level. It
can also be observed that, because the AER is based on the GMM model, good initialization will
contribute to better performances. Algorithms, such as K-means++ [68], are useful initializations
on individual Gaussian distributions, whereas some quantization-based methods, such as the scalar
quantization in [67], can serve as convenient methods to provide initial separations for different
Gaussian clusters.

30

8 Conclusion
In this paper, a novel method, the adaptive ensemble of classifiers with regularization (AER), has
been proposed for binary imbalanced data classification. The details of the method, including
implementations with the XGBoost, are provided, and related training formulas are derived. In
addition to the regularization properties, we illustrate that the method has favorable time and
memory complexity. The performance of the proposed algorithm is tested on multiple datasets,
and empirical evidences illustrate that the performances are better or competitive, compared to
the classical algorithms and the recent ones. In addition, the proposed method has advantages
in terms of dealing with highly imbalanced data, and benefits the research on solving overfitting
problem, especially for dynamic ensemble methods.

Three major contributions have been made in this study. Firstly, we propose an algorithm with
state-of-the-art performance on binary imbalanced data. Compared with the existing optimization
methods and recent developments in the area (such as focal loss and LightGBM), the performance
of the proposed method is, at least, competitive, in terms of multiple metrics. Secondly, the
proposed method has multiple advantages other than classification performance, including better
time and memory complexity and a flexible framework compatible with a majority of binary
classifiers. Finally, we have investigated the regularization problem in dynamic ensemble methods,
which is relatively underexplored in the previous publications. Experimental results show that
the regularization techniques improve the performances of various models; furthermore, they have
excellent potentials with regard to the classification of multi-class imbalanced data, e.g., one can
decompose the problem of multi-class imbalanced data classification into a series of jobs of binary
imbalanced data classification.

In the future, we plan to further explore the AER model from both the method and the appli-
cation perspectives. On the method level, we can extend the AER model to multi-class imbalanced
classification by combining binary AERs; Alternatively, we can study more advanced dynamic en-
semble methods to represent multiple classes. The exploration of other forms of generalization is
also a promising direction. From the application perspective, we are interested in applying the pro-
posed AER method to various real-life problems with imbalanced data. Since the label-imbalance
of datasets exists pervasively in industrial practice, there should be a wide range of applications
for the AER method.

Acknowledgement
We appreciate the earlier contributions from Qin Yu, Hang Zhang, Yanmei Yu, and Chao Sun to
the paper. We also thank Michael Tan of University College London for his writing suggestions.

Funding Statement
This work is supported by the Sichuan Science and Technology Program (2020YFG0051), and the
University-Enterprise Cooperation Projects (17H1199, 19H0355, 19H1121).

References
[1] Guo Haixiang, Li Yijing, Jennifer Shang, Gu Mingyun, Huang Yuanyue, and Gong Bing.

Learning from class-imbalanced data: Review of methods and applications. Expert Systems
with Applications, 73:220–239, 2017.

[2] Shamsul Huda, John Yearwood, Herbert F Jelinek, Mohammad Mehedi Hassan, Giancarlo
Fortino, and Michael Buckland. A hybrid feature selection with ensemble classification for
imbalanced healthcare data: A case study for brain tumor diagnosis. IEEE Access, 4:9145–
9154, 2016.

[3] Atefeh Dehghani Ashkezari, Hui Ma, Tapan K Saha, and Chandima Ekanayake. Application
of fuzzy support vector machine for determining the health index of the insulation system
of in-service power transformers. IEEE Transactions on Dielectrics and Electrical Insulation,
20(3):965–973, 2013.

31

[4] Isaac Triguero, Sara del Río, Victoria López, Jaume Bacardit, José M Benítez, and Francisco
Herrera. Rosefw-rf: the winner algorithm for the ecbdl’14 big data competition: an extremely
imbalanced big data bioinformatics problem. Knowledge-Based Systems, 87:69–79, 2015.

[5] Rafael M. O. Cruz, Robert Sabourin, and George D. C. Cavalcanti. On dynamic ensemble
selection and data preprocessing for multi-class imbalance learning. International Journal of
Pattern Recognition and Artificial Intelligence, 33:1940009:1–1940009:29, 2019.

[6] Anandarup Roy, Rafael MO Cruz, Robert Sabourin, and George DC Cavalcanti. A study on
combining dynamic selection and data preprocessing for imbalance learning. Neurocomputing,
286:179–192, 2018.

[7] Valdigleis S Costa, Antonio Diego S Farias, Benjamin Bedregal, Regivan HN Santiago, and
Anne Magaly de P Canuto. Combining multiple algorithms in classifier ensembles using
generalized mixture functions. Neurocomputing, 313:402–414, 2018.

[8] André L Brun, Alceu S Britto Jr, Luiz S Oliveira, Fabricio Enembreck, and Robert Sabourin.
A framework for dynamic classifier selection oriented by the classification problem difficulty.
Pattern Recognition, 76:175–190, 2018.

[9] David Barber. Bayesian reasoning and machine learning. Cambridge University Press, 2012.

[10] Douglas A Reynolds and Richard C Rose. Robust text-independent speaker identification
using gaussian mixture speaker models. IEEE transactions on speech and audio processing,
3(1):72–83, 1995.

[11] William A Gardner. Learning characteristics of stochastic-gradient-descent algorithms: A
general study, analysis, and critique. Signal processing, 6(2):113–133, 1984.

[12] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-
standing deep learning requires rethinking generalization. In 5th International Conference on
Learning Representations (ICLR), 2017.

[13] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks,
61:85–117, 2015.

[14] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale ma-
chine learning. Siam Review, 60(2):223–311, 2018.

[15] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining,
pages 785–794, 2016.

[16] Tsung-Yi Lin, Priyal Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. IEEE transactions on pattern analysis and machine intelligence, 2018.

[17] Chen Wang, Chengyuan Deng, and Suzhen Wang. Imbalance-xgboost: Leveraging weighted
and focal losses for binary label-imbalanced classification with xgboost. Pattern Recognition
Letters, 2020.

[18] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In Advances in
neural information processing systems, pages 3146–3154, 2017.

[19] Swagatam Das, Shounak Datta, and Bidyut B Chaudhuri. Handling data irregularities in
classification: Foundations, trends, and future challenges. Pattern Recognition, 81:674–693,
2018.

[20] Alberto Fernández, Victoria López, Mikel Galar, María José Del Jesus, and Francisco Her-
rera. Analysing the classification of imbalanced data-sets with multiple classes: Binarization
techniques and ad-hoc approaches. Knowledge-based systems, 42:97–110, 2013.

[21] Bartosz Krawczyk. Learning from imbalanced data: open challenges and future directions.
Progress in Artificial Intelligence, 5(4):221–232, 2016.

32

[22] Ajinkya More. Survey of resampling techniques for improving classification performance in
unbalanced datasets. arXiv preprint arXiv:1608.06048, 2016.

[23] Salman H Khan, Munawar Hayat, Mohammed Bennamoun, Ferdous A Sohel, and Roberto
Togneri. Cost-sensitive learning of deep feature representations from imbalanced data. IEEE
transactions on neural networks and learning systems, 2017.

[24] Shounak Datta and Swagatam Das. Near-bayesian support vector machines for imbalanced
data classification with equal or unequal misclassification costs. Neural Networks, 70:39–52,
2015.

[25] Bhagat Singh Raghuwanshi and Sanyam Shukla. Class-specific extreme learning machine for
handling binary class imbalance problem. Neural Networks, 105:206–217, 2018.

[26] Sanyam Shukla and Bhagat Singh Raghuwanshi. Online sequential class-specific extreme
learning machine for binary imbalanced learning. Neural Networks, 119:235–248, 2019.

[27] Colin Bellinger, Shiven Sharma, and Nathalie Japkowicz. One-class versus binary classi-
fication: Which and when? In Machine Learning and Applications (ICMLA), 2012 11th
International Conference on, volume 2, pages 102–106. IEEE, 2012.

[28] Ruisen Luo, Qian Feng, Chen Wang, Xiaomei Yang, Haiyan Tu, Qin Yu, Shaomin Fei, and
Xiaofeng Gong. Feature learning with a divergence-encouraging autoencoder for imbalanced
data classification. IEEE Access, 6:70197–70211, 2018.

[29] Richard De Veaux. Bagging and boosting. Encyclopedia of Biostatistics, 1, 2005.

[30] Mikel Galar, Alberto Fernández, Edurne Barrenechea, Humberto Bustince, and Francisco
Herrera. An overview of ensemble methods for binary classifiers in multi-class problems:
Experimental study on one-vs-one and one-vs-all schemes. Pattern Recognition, 44(8):1761–
1776, 2011.

[31] Taghi M Khoshgoftaar, Moiz Golawala, and Jason Van Hulse. An empirical study of learning
from imbalanced data using random forest. In 19th IEEE international conference on Tools
with Artificial Intelligence, ICTAI., volume 2, pages 310–317. IEEE, 2007.

[32] Qi Wang, ZhiHao Luo, JinCai Huang, YangHe Feng, and Zhong Liu. A novel ensemble method
for imbalanced data learning: bagging of extrapolation-smote svm. Computational intelligence
and neuroscience, pages 1–11, 2017.

[33] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince, and Francisco
Herrera. A review on ensembles for the class imbalance problem: bagging-, boosting-, and
hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 42(4):463–484, 2012.

[34] Michał Woźniak, Manuel Graña, and Emilio Corchado. A survey of multiple classifier systems
as hybrid systems. Information Fusion, 16:3–17, 2014.

[35] Taghi M Khoshgoftaar, Jason Van Hulse, and Amri Napolitano. Comparing boosting and
bagging techniques with noisy and imbalanced data. IEEE Transactions on Systems, Man,
and Cybernetics-Part A: Systems and Humans, 41(3):552–568, 2011.

[36] Tiago Pessoa Ferreira De Lima, Anderson Tenorio Sergio, and Teresa Bernarda Ludermir.
Improving classifiers and regions of competence in dynamic ensemble selection. In Brazilian
Conference on Intelligent Systems, 2014.

[37] Kevin Woods, W. Philip Kegelmeyer, and Kevin Bowyer. Combination of multiple classifiers
using local accuracy estimates. IEEE transactions on pattern analysis and machine intelli-
gence, 19(4):405–410, 1997.

[38] Albert HR Ko, Robert Sabourin, and Alceu Souza Britto Jr. From dynamic classifier selection
to dynamic ensemble selection. Pattern Recognition, 41(5):1718–1731, 2008.

33

[39] Chen Lin, Wenqiang Chen, Cheng Qiu, Yunfeng Wu, Sridhar Krishnan, and Quan Zou.
Libd3c: ensemble classifiers with a clustering and dynamic selection strategy. Neurocom-
puting, 123:424–435, 2014.

[40] Rafael MO Cruz, Robert Sabourin, George DC Cavalcanti, and Tsang Ing Ren. Meta-des: a
dynamic ensemble selection framework using meta-learning. Pattern recognition, 48(5):1925–
1935, 2015.

[41] Jin Xiao, Ling Xie, Changzheng He, and Xiaoyi Jiang. Dynamic classifier ensemble model for
customer classification with imbalanced class distribution. Expert Systems with Applications,
39(3):3668–3675, 2012.

[42] Bartosz Krawczyk, Mikel Galar, Michał Woźniak, Humberto Bustince, and Francisco Herrera.
Dynamic ensemble selection for multi-class classification with one-class classifiers. Pattern
Recognition, 83:34–51, 2018.

[43] Mohammad Babaeizadeh, Paris Smaragdis, and Roy H Campbell. Noiseout: A simple way to
prune neural networks. arXiv preprint arXiv:1611.06211, 2016.

[44] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958, 2014.

[45] Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling for class-imbalance
learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
39(2):539–550, 2008.

[46] Han Kyu Lee and Seoung Bum Kim. An overlap-sensitive margin classifier for imbalanced
and overlapping data. Expert Systems with Applications, 98:72–83, 2018.

[47] Junhong Lin, Lorenzo Rosasco, and Ding-Xuan Zhou. Iterative regularization for learning
with convex loss functions. The Journal of Machine Learning Research, 17(1):2718–2755,
2016.

[48] Junhong Lin, Raffaello Camoriano, and Lorenzo Rosasco. Generalization properties and im-
plicit regularization for multiple passes sgm. In International Conference on International
Conference on Machine Learning, 2016.

[49] Bartosz Krawczyk, Mikel Galar, Łukasz Jeleń, and Francisco Herrera. Evolutionary under-
sampling boosting for imbalanced classification of breast cancer malignancy. Applied Soft
Computing, 38:714–726, 2016.

[50] Xin Xia, David Lo, Emad Shihab, Xinyu Wang, and Xiaohu Yang. Elblocker: Predicting
blocking bugs with ensemble imbalance learning. Information and Software Technology, 61:93–
106, 2015.

[51] Zhenxiang Chen, Qiben Yan, Hongbo Han, Shanshan Wang, Lizhi Peng, Lin Wang, and
Bo Yang. Machine learning based mobile malware detection using highly imbalanced network
traffic. Information Sciences, 433:346–364, 2018.

[52] Shahla Mardani and Hamid Reza Shahriari. A new method for occupational fraud detection
in process aware information systems. In 10th International ISC Conference on Information
Security and Cryptology (ISCISC), pages 1–5. IEEE, 2013.

[53] Lei Xu and Michael I Jordan. On convergence properties of the em algorithm for gaussian
mixtures. Neural computation, 8(1):129–151, 1996.

[54] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.
Scikit-learn: Machine learning in python. Journal of machine learning research, 12(Oct):2825–
2830, 2011.

[55] John J Dziak, Donna L Coffman, Stephanie T Lanza, and Runze Li. Sensitivity and specificity
of information criteria. The Methodology Center and Department of Statistics, Penn State,
The Pennsylvania State University, 16(30):140, 2012.

34

[56] Ivan Tomek. An experiment with the edited nearest-neighbor rule. IEEE Transactions on
Systems, Man, and Cybernetics, 1976.

[57] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. Annals
of Statistics, 29(5):1189–1232, 2001.

[58] Isaac Triguero, Sergio González, Jose M Moyano, Salvador García López, Jesús Alcalá Fer-
nández, Julián Luengo Martín, Alberto Fernández Hilario, María José del Jesús Díaz, Luciano
Sánchez, Francisco Herrera Triguero, et al. Keel 3.0: an open source software for multi-stage
analysis in data mining. 2017.

[59] Amanda C Schierz. Virtual screening of bioassay data. Journal of cheminformatics, 1(1):21,
2009.

[60] Rogério P. Espíndola and Nelson F.F. Ebecken. On extending f-measure and g-mean metrics
to multi-class problems. WIT Transactions on Information and Communication Technologies,
35, 2005.

[61] Mahesh Pal, Aaron E Maxwell, and Timothy A Warner. Kernel-based extreme learning
machine for remote-sensing image classification. Remote Sensing Letters, 4(9):853–862, 2013.

[62] Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in statistics,
pages 196–202. Springer, 1992.

[63] Thomas G Dietterich. Approximate statistical tests for comparing supervised classification
learning algorithms. Neural computation, 10(7):1895–1923, 1998.

[64] Magdalena Graczyk, Tadeusz Lasota, Zbigniew Telec, and Bogdan Trawiński. Nonparametric
statistical analysis of machine learning algorithms for regression problems. In International
Conference on Knowledge-Based and Intelligent Information and Engineering Systems, pages
111–120. Springer, 2010.

[65] Skipper Seabold and Josef Perktold. Statsmodels: Econometric and statistical modeling with
python. In 9th Python in Science Conference, 2010.

[66] David Peel and Geoffrey J McLachlan. Robust mixture modelling using the t distribution.
Statistics and computing, 10(4):339–348, 2000.

[67] Chen Wang, Xiaomei Yang, Shaomin Fei, Kai Zhou, Xiaofeng Gong, Miao Du, and Ruisen
Luo. Scalar quantization as sparse least square optimization. IEEE transactions on pattern
analysis and machine intelligence, in press, DOI: 10.1109/TPAMI.2019.2952096.

[68] Rafail Ostrovsky, Yuval Rabani, Leonard J Schulman, and Chaitanya Swamy. The effectiveness
of lloyd-type methods for the k-means problem. Journal of the ACM (JACM), 59(6):1–22,
2013.

35

A Hyper-parameters for Experiments
In this section, we provide hyper-parameter sets for experiments in section 6 for reproducibility,
demonstrated in table 25. Note that the parameters not mentioned are set to the default value of
the corresponding models.

Table 25: Parmaeters Applied to All Methods
.

Method Parameters

Cost-sensitive Decision Tree tuned_params = {”class_weight” : [{0 : 1, 1 : 110}, {0 : 1, 1 : 130},
{0 : 1, 1 : 150},′ balanced′], ”criterion” : [′gini′,′ entropy′]}

Cost-sensitive SVM
tuned_params = {”class_weight” : [{0 : 1, 1 : 110}, {0 : 1, 1 : 130},
{0 : 1, 1 : 150},′ balanced′], ”kernel” : [′linear′,′ rbf ′,′ poly′],
”degree” : [3]}

Focal loss neural network α = 0.25, γ = 3

LightGBM tuned_params = {”eta” : [0.1, 0.3, 0.5, 0.7], ”max_depth” : [5, 6, 7, 8, 9, 10],
”num_round” : [7, 8, 9, 10]}

Focal XGBoost tuned_params = {focal_gamma = [1.0, 1.5, 2.0]}

Dynamic Ensemble
tuned_params = {”n_estimators” : [40, 45, 50, 55, 60], ”max_depth” : [6, 7, 8, 9],
”num_leaves” : [20, 30, 40, 50, 60]}
model_num = [9, 10, 11, 12, 13, 14]

AER
tuned_params = {”eta” : [0.1, 0.3, 0.5, 0.7], ”max_depth” : [5, 6, 7, 8, 9, 10],
”num_round” : [7, 8, 9, 10]}
model_num = [9, 10, 11, 12, 13, 14]

36

	Adaptive ensemble of classifiers with regularization for imbalanced data classification
	Recommended Citation
	Authors

	1 Introduction
	2 Related Work
	3 Methods
	3.1 Gaussian Mixture Model Fitting and Subset Generation
	3.2 Fitting of Individual Base Classifier
	3.3 Stochastic Gradient Descent Training for the Ensemble of Classifiers
	3.4 Weight Computation and the Probabilistic Prediction

	4 Theoretical Analysis of the AER
	4.1 Time Complexity
	4.2 Memory Complexity

	5 Experimental Analysis: the Framework
	5.1 Datasets
	5.2 Compared Methods
	5.3 Performance Metrics
	5.4 Statistical Testing

	6 Experimental Analysis: the Results and Discussions
	6.1 UCI Bioassay
	6.2 Abalone 19 Data
	6.3 GMM-generated Data and Variations
	6.4 Other UCI Imbalanced Datasets

	7 Discussions
	8 Conclusion
	A Hyper-parameters for Experiments

