
Tennessee State University Tennessee State University 

Digital Scholarship @ Tennessee State University Digital Scholarship @ Tennessee State University 

Chemistry Faculty Research Department of Chemistry 

11-2-2015 

Viral infection causes a shift in the self peptide repertoire Viral infection causes a shift in the self peptide repertoire 

presented by human MHC class I molecules presented by human MHC class I molecules 

Charles T. Spencer 
University of Texas at El Paso 

Jelena S. Bezbradica 
University of Queensland 

Mireya G. Ramos 
University of Texas at El Paso 

Chenoa D. Arico 
University of Texas at El Paso 

Stephanie B. Conant 
Vanderbilt University 

See next page for additional authors 

Follow this and additional works at: https://digitalscholarship.tnstate.edu/chemistry-faculty 

 Part of the Organic Chemistry Commons, and the Virus Diseases Commons 

Recommended Citation Recommended Citation 
Spencer, C.T., Bezbradica, J.S., Ramos, M.G., Arico, C.D., Conant, S.B., Gilchuk, P., Gray, J.J., Zheng, M., Niu, 
X., Hildebrand, W., Link, A.J. and Joyce, S. (2015), Viral infection causes a shift in the self peptide 
repertoire presented by human MHC class I molecules. Prot. Clin. Appl., 9: 1035-1052. https://doi.org/
10.1002/prca.201500106 

This Article is brought to you for free and open access by the Department of Chemistry at Digital Scholarship @ 
Tennessee State University. It has been accepted for inclusion in Chemistry Faculty Research by an authorized 
administrator of Digital Scholarship @ Tennessee State University. For more information, please contact 
XGE@Tnstate.edu. 

https://digitalscholarship.tnstate.edu/
https://digitalscholarship.tnstate.edu/chemistry-faculty
https://digitalscholarship.tnstate.edu/chemistry
https://digitalscholarship.tnstate.edu/chemistry-faculty?utm_source=digitalscholarship.tnstate.edu%2Fchemistry-faculty%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/138?utm_source=digitalscholarship.tnstate.edu%2Fchemistry-faculty%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/998?utm_source=digitalscholarship.tnstate.edu%2Fchemistry-faculty%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:XGE@Tnstate.edu


Authors Authors 
Charles T. Spencer, Jelena S. Bezbradica, Mireya G. Ramos, Chenoa D. Arico, Stephanie B. Conant, Pavlo 
Gilchuk, Jennifer J. Gray, Mu Zheng, Xinnan Niu, William Hildebrand, Andrew J. Link, and Sebastian Joyce 

This article is available at Digital Scholarship @ Tennessee State University: https://digitalscholarship.tnstate.edu/
chemistry-faculty/73 

https://digitalscholarship.tnstate.edu/chemistry-faculty/73
https://digitalscholarship.tnstate.edu/chemistry-faculty/73


Viral infection causes a shift in the self peptide repertoire 
presented by human MHC class I molecules

Charles T. Spencer2,*, Jelena S. Bezbradica3, Mireya G. Ramos2, Chenoa D. Arico2, 
Stephanie B. Conant4, Jennifer J. Gray4, Mu Zheng4,5, Xinnan Niu4,5, William Hildebrand6, 
Andrew J. Link4,5, and Sebastian Joyce1,4,*

1Veterans Administration Tennessee Valley Healthcare System, Nashville, TN 37232

2Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968

3Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia

4Department of Pathology, Microbiology and Immunology, Vanderbilt University School of 
Medicine, Nashville, TN 37232

5Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
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Abstract

 Purpose—MHC class I presentation of peptides allows T cells to survey the cytoplasmic 

protein milieu of host cells. During infection, presentation of self peptides is, in part, replaced by 

presentation of microbial peptides. However, little is known about the self peptides presented 

during infection, despite the fact that microbial infections alter host cell gene expression patterns 

and protein metabolism.

 Experimental design—The self peptide repertoire presented by HLA-A*01;01, -A*02;01, -

B*07;02, -B*35;01 and -B*45;01 was determined by mass spectrometry before and after vaccinia 

virus infection.

 Results—We observed a profound alteration in the self peptide repertoire with hundreds of 

self peptides uniquely presented after infection for which we have coined the term ‘self peptidome 

shift’. The fraction of novel self peptides presented following infection varied for different HLA 

class I molecules. A large part (~40%) of the self peptidome shift was composed of peptides 

derived from type I interferon-inducible genes, consistent with cellular responses to viral infection. 

Interestingly, ~12% of self peptides presented after infection showed allelic variation when 

searched against ~300 human genomes.
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 Conclusion and clinical relevance—Self peptidome shift in a clinical transplant setting 

could result in alloreactivity by presenting new self peptides in context of infection-induced 

inflammation.

Keywords

infection; minor histocompatibility; peptidome; self peptides; transplantation

 Introduction

MHC class I-restricted antigen processing and presentation inform T cells as to the internal 

state of the cell by binding cytoplasmic peptides and presenting them at the cell surface 

[1-3]. During homeostasis, these peptides are derived from self proteins and their 

presentation signifies normal cellular operations and as such is ignored by self-educated T 

cells. However, during infection, microbial peptides are processed and fed into this antigen 

presentation pathway alerting the immune system to the presence of a pathogen [4]. 

Activation of an innate immune response to the pathogen creates an inflammatory milieu 

that provides additional signals to the T cell, triggering its full activation.

Self peptide presentation at the immunological synapse contributes to T cell activation by 

lowering the activation threshold [5-7]. Since self peptides are continuously present at the 

immunological synapse, T cells strongly recognizing self peptide/MHC complexes (pMHC) 

must be deleted during thymic education to prevent the development of autoimmune disease 

[8]. However, T cell positive selection requires weak recognition of self pMHC complexes 

[9]. Peripheral self pMHC recognition in the absence of inflammation leads to tolerization 

[10]. Conversely, self peptide recognition in the context of the inflammatory stimulus 

emerging from a microbial infection can lead to activation of weakly self-reactive T cells 

and the development of autoimmune disease, e.g., diabetes, multiple sclerosis and 

polymyositis [11, 12]. Therefore, optimal peripheral T cell activation requires a combination 

of inflammatory signals, non-self pMHC recognition and low affinity self pMHC 

recognition to fully activate T cells.

Even though T cells strongly reactive to self pMHC are deleted during development, self 

peptides can act as minor histocompatibility antigens in the context of allograft 

transplantation if the genes encoding self peptides show allelic variation (i.e., when DNA 

sequences for the same gene differ between two or more variant alleles) within the human 

population [13-16]. Presentation of peptides containing allelic differences, termed 

allopeptides, by the HLA of donor transplanted tissue cells can activate recipient T cells 

leading to graft rejection. Alternatively, donor T cells may recognize recipient allopeptides 

leading to graft-versus-host disease (GVHD) even in a HLA-matched bone marrow 

transplant. Since immunosuppressive drugs given to the otherwise healthy transplant 

recipient suppress inflammation, allopeptide recognition by T cells should lead to tolerance. 

Nonetheless, once the graft has been accepted and the immunosuppressive drugs are 

withdrawn, subsequent infections would incite inflammatory conditions. Indeed, viral 

infections occur after transplantation in ~10-60% of immunosuppressed patients, leading to 

adverse effects on the host and/or transplanted organ [17, 18]. Recognition of new 
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allopeptides that T cells have not been tolerized against, e.g., those that are not presented 

during homeostatic conditions, could result in T cell activation and immunopathology [19]. 

Hence, alterations in self peptides under inflammatory conditions can be detrimental to 

transplanted tissues/organs.

Despite their importance, little is known regarding the nature of the self peptide repertoire 

(peptidome) displayed during infection. Small-scale studies have reported little change in the 

self peptidome displayed by HLA-A*02;01 and HLA-B*07;02 after human 

immunodeficiency virus (HIV, [20]), influenza virus (INV, [21]), and measles virus (MeV, 

[22]) infections. Herein, we use a large-scale proteomics approach to study the dynamics of 

self peptides presented by five major HLA class I molecules, HLAA*01;01, -A*02;01, -

B*07;02, -B*35;01, -B*45;01 before and after vaccinia virus (VACV) infection. In contrast 

to earlier studies (18-20), we observed a profound shift in the self peptidomes uniquely 

displayed by the five HLA class I molecules studied herein after VACV infection. The newly 

presented self peptides did not derive from any specific chromosomal region. A fraction 

(~40%) of them represented peptides derived from type I interferon-induced genes – 

consistent with the activation of cellular antiviral pathways – but also included other 

unrelated peptides, suggesting a global change in cellular protein metabolism in response to 

infection. Furthermore, population analyses of self peptides presented after infection 

revealed that a significant number of peptides were derived from proteins containing allelic 

variation(s). The frequency (~12%) of allelic variation was similar to the rate of 

complications reported for transplants between HLA-matched pairs [23, 24]. This changing 

repertoire may provide a possible mechanism for the initiation of allograft rejection or 

GVHD. Hence, sequencing of the transplant donor and recipient transcriptomes/proteomes 

could help uncover potential allopeptides that can complicate allograft outcomes [15, 16, 

25-32].

 Materials and Methods

 Viruses

The Western Reserve strain of vaccinia virus (VACV; ATCC, VR-119) was grown in and 

titrated with BSC-40 cells as previously described [33].

 Large-scale cell culture and VACV infection

Soluble HLA class I (sA1.1, sA2.1, sB7.2, sB35.1 and sB45.1) production and harvest were 

as described previously [34]. Briefly, ~1×109 viable cells were inoculated with VACV (MOI 

0.1). Supernatants containing ~0.3—4.2mg/L sA1, sA2, sB7, sB35 or sB45 were collected at 

24, 48, and 72 hrs post inoculation.

 Isolation and fractionation of class I-associated peptides

sA1, sA2, sB7, sB35 and sB45 were affinity purified using W6/32-bound protein A 

Sepharose (GE Healthcare). Class I-associated peptide elution, separation and reversed-

phase HPLC purification were all performed as previously described [35].
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 Mass spectrometry sequencing of eluted peptides

Lyophilized fractions were resuspended in 0.1% formic acid and subjected to reversed-phase 

microcapillary LC-nanoESI-MS/MS analysis using an Agilent 1100 binary HPLC pump and 

an LTQ linear ion trap mass spectrometer 2.2 (Thermofisher). A fritless, microcapillary 

column (100-μm inner diameter) was packed with 10 cm of 5-μm C18 reversed-phase 

material (Synergi 4u Hydro RP80a, Phenomenex) as previously described [36]. RPC 

fractionated peptides were loaded onto the column equilibrated in buffer A (0.1% formic 

acid, 5% acetonitrile) using a LCPacking's autosampler. Flow splitting was used to reduce 

the HPLC flow rate from 200μl/min to 0.3μl/min as previously described [36, 37]. Peptides 

from the microcapillary column were eluted directly into the linear ion LTQ mass 

spectrometer equipped with a microelectrospray source (James Hill Instrument Service). 

Peptides were eluted using a 60-min linear gradient from 0 to 60% buffer B (0.1% formic 

acid, 80% acetonitrile) at a flow rate of 0.3μl/min. During the gradient, the eluted ions were 

analyzed by one full precursor MS scan (400–2000 m/z) followed by five MS/MS scans of 

the five most abundant ions detected in the precursor MS scan while operating under 

dynamic exclusion. 65% of peaks were identified in replicate samples by this analysis. The 

program extractms2 was used to generate the ASCII peak list and identify +1 or multiply 

charged precursor ions from the native mass spectrometry data file [38]. Tandem spectra 

were searched with no protease specificity using SEQUEST-PVM [39] against a 

concatenated Human RefSeq protein database release May 2005 (28,818 entries), Vaccinia 

WR Copenhagen Uniprot protein database (760 entries) or a merged human and vaccinia 

FASTA database of protein sequences [40]. For multiply charged precursor ions (z ≥ +2), an 

independent search was performed on both the +2 and +3 mass of the parent ion. A weighted 

scoring matrix was used to select the most likely charge state of multiply charged precursor 

ions as previously described [41, 42]. Sequest search results were imported into 

Bioinformatic Graphical Comparative Analysis Tools (BIGCAT) and analyzed as previously 

described [33, 41]. Xcorr threshold of 1.5 for charge state 1, 2.0 for charge state 2, and 2.5 

for charge state 3 and above was used to filter the peptides. This resulted in a false discovery 

rate (FDR) of 3.6%, which was calculated as the percentage of the number of peptide hits 

from the reversed database in the total number of peptides in the filtered list (FDR = number 

of reverse peptides/total number of peptides * 100).

 Bioinformatics

Searches for publicly reported CD8 T cell epitopes and potential epitopes identified by 

algorithms were conducted through the Immune Epitope Database (http://www.iedb.org/). 

Peptide conservation amongst other Orthopoxviridae members was performed using BLAST 

search (NCBI). Self peptides were searched against the human proteome and nucleotide 

databases using the PAM30 matrix with the BLAST search program restricting the searches 

with the entrez criterion txid9606[orgn] to specify Homo sapiens. Genes encoding these 

peptide sequences were verified to be present in the HeLa genome by searching the 

translated HeLa Cell Genome Sequencing Studies (phs000640.v2.p1) database at the 

Database of Genotypes and Phenotypes (dbGaP), Bethesda (MD): National Center for 

Biotechnology Information, National Library of Medicine [43, 44]. Proteins were classified 

by functional class using the Panther Database version 9.0 [45, 46]. Innate immune 

responsive proteins were identified using the Interferome database [47]. So also, self 
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peptides derived from known or potential oncogenes products were identified by BLAST 

search against the TSGene database [48]. Tissue expression of proteins was determined 

using the Tissue-specific Gene Expression and Regulation (TiGER) database [49].

 Analysis

Microsoft Excel and PowerPoint, Prism GraphPad and Adobe Photoshop were used to 

analyze data and generate graphs and figures.

 Results

 VACV infection induces a profound self peptidome shift

To determine whether the presentation of self peptides changes after VACV infection, which 

is known to alter host protein metabolism [50-55], HeLa cells expressing secreted HLA 

A*01;01, A*02;01, B*07;02, B*35;01 and B*45;01, [34] molecules were infected with 

VACV. One, two and three days post infection, soluble class I molecules were affinity 

purified from culture supernatants of infected cells or uninfected controls. The associated 

peptides were acid eluted and fractionated by reversed-phase chromatography, as described 

previously [56]. Each of the resulting 150 fractions were individually subjected to mass 

analyses by 2D HPLC in-line with ESI-MS/MS. Peptide mass spectra so obtained were 

compared against both VACV and human proteomes to determine their origin and confirm 

sequence. Mass spectrometry data revealed the processing and presentation of numerous 

peptides derived from VACV, confirming infection of the HeLa cells (Figure 1, Table 1 and 

Supplemental Table 1; [33]).

Comparative proteome searches identified 520 A*01;01-, 581 A*02;01-, 132 B*07;02-, 127 

B*35;01-, and 303 B*45;01-associated VACV-derived peptides that were presented only 

upon infection; of those, 34 A*01;01-, 109 A*02;01-, 65 B*07;02-, 68 B*35;01-, 49 

B*45;01-restricted peptide sequences correlated with the MS/MS spectra's fragment ion data 

with high confidence (see Materials and Methods). Similar to prior reports, these naturally 

processed and presented peptides were derived from all functional and kinetic classes of 

VACV proteins (Table 1, Supplemental Table 1; [33, 57]).

To identify self peptides, MS/MS spectra of ligands eluted from the same class I preparation 

from which VACV peptides were identified were searched against a Human RefSeq protein 

database (release May 2005; 28,818 entries). These searches returned 1,705 A*01;01-, 3,449 

A*02;01-, 1,590 B*07;02-, 1,000 B*35;01-, and 751 B*45;01-associated peptide sequences 

derived from the human proteome (Figure 1 and Figure 2). However, since these peptides 

were eluted from HeLa cells, we ascertained whether the peptides identified by MS/MS 

analysis were contained within proteins encoded by the HeLa genome. For this, the HeLa 

Cell Genome Sequencing Studies database (phs000640.v2.p1; Database of Genotypes and 

Phenotypes (dbGaP), National Center for Biotechnology Information, National Library of 

Medicine [43, 44]) was searched. Indeed, the peptide sequences reported herein were 

derived from proteins encoded by the HeLa genome (Table 2 and Supplementary Table 2).

In order to determine the reproducibility of peptide identification, peptides presented by 

HLA-A*02;01 were eluted from two independently infected cell samples and sequenced by 
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MS/MS. Replicate analyses of the self peptides eluted from sA2.1 molecules expressed by 

VACV-infected cells revealed that ~60-80% of the HLA-bound peptides were presented at 

the same time points in both experiments (Supplemental Table 3).

Comparisons of the self peptides sequenced before and during infection revealed that all five 

HLA class I molecules investigated here presented numerous novel self peptide sequences 

after VACV infection. Ranging from ~30 to ~80% of the sequenced peptides, we identified 

965 A*01;01- (~56%), 2,783 A*02;01- (~80%), 1,025 B*07;02- (~64%), 354 B*35;01- 

(~35%), and 234 B*45;01 (~30%)-associated human peptide sequences that were presented 

solely after infection. Some of the new self peptides were presented stably throughout the 

course of the infection while others (majority) were presented in a kinetic fashion: one, two 

or three days post infection (Figure 2), likely reflecting the kinetics of protein expression 

from which a given peptide was derived. These data, in conjunction with the high 

reproducibility of the self peptides between replicate experiments, indicate that VACV 

infection induced a self peptidome shift that was much more profound than those induced by 

INV, MeV and HIV infections [20-22].

 Characterization of the self peptidome shift reveals that VACV infection up-regulates 
type I IFN-regulated and other cellular pathways

We previously reported that about a fifth of the VACV peptides presented by HLA class I 

molecules were recognized during a natural infection [56]. We reasoned that the 

nonantigenic VACV peptides may have close sequence homology to the self peptides that 

are uniquely presented by infected cells. To narrow the analysis of these potentially 

homologous peptides, focus was laid on 169 A*01;01-, 309 A*02;01-, 157 B*07;02-, 71 

B*35;01-, and 107 B*45;01-associated peptide sequences that correlated with the MS/MS 

spectra's fragment ion data with high confidence (see Materials and Methods). These 

peptides were further interrogated to determine the mechanism(s) that induced the 

presentation of altered self peptidomes (Table 2 and Supplemental Table 2). In initial 

analyses, self peptides were compared against the VACV proteome to determine whether 

self peptides uniquely presented after infection had similarity to VACV peptides. On average 

only about 4.7% (range 2.5%—8.2%) of the self peptides were ≥66.6% identical, i.e., less 

than three amino acid changes, when compared to potential VACV peptides (Table 2 and 

Supplemental Table 2). Hence, there was very little sequence similarity between self and 

viral peptides presented after infection.

The presentation of unique self peptides after infection had been reported to result from the 

activation of multiple cellular pathways [20, 22]. Therefore, we classified the proteins from 

which these unique infection-induced self peptides were derived based upon their cellular 

functions by searching the Panther database [45, 46]. This analysis revealed that the proteins 

from which self peptides uniquely presented after infection were derived were distributed 

amongst multiple functional categories (Figure 3 and Supplemental Table 2). There was little 

alteration in the proportion of each functional protein family after VACV infection compared 

with uninfected samples (Supplemental Figure 1), suggesting that no particular functional 

family was induced in response to infection.
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HeLa cells respond to infection with a type I interferon response by up regulating internal 

innate sensors and mediators to defend against infection [58]. Therefore, we specifically 

sought to identify whether interferon responsive proteins were up regulated following VACV 

infection by searching the Interferome database for proteins known to be responsive to type I 

interferons [47]. Approximately, 40% of the self peptides uniquely presented after infection 

were attributed to type I interferon signaling (Table 2 and Supplemental Table 2) suggesting 

that the remaining 60% of the newly presented peptides were derived from host proteins 

other than those directly responsive to interferon signaling (Figure 3). These proteins are 

either uniquely expressed post infection or are differentially process by interferon-induced 

immunoproteasome in infected cells, — compared to the resting proteasome of uninfected 

controls. Therefore, alterations in host cell metabolism, possibly through interferon 

signaling, might play a significant role in the presentation of an infection-induced self 

peptidome.

Recent drafts of the human proteome revealed that proteins routinely expressed by cells 

were encoded by genes distributed across all chromosomes, but rarely, if at all, from 

chromosome 21 and not at all from the Y chromosome [25, 26]. As well because our 

analyses so far indicated very little preference for protein families from which the infection-

induced self peptides are derived, we mapped the chromosomal location of the genes that 

encode proteins from which newly presented peptides were derived in order to identify a 

particular chromosomal region containing the majority of newly presented peptides. The 

control of this region would perhaps point to a possible mechanism for this presentation. The 

infection-induced self peptides identified herein were derived from proteins encoded by 

genes distributed across all chromosomes with no concerted enrichment evident at any 

particular region of the human genome (grey bars, Figure 4 and Supplemental Figure 2). 

Similar to the reported proteome maps, few peptides were derived from proteins encoded 

from chromosome 21, but chromosomes 20 and 22 as well. No proteins were identified as 

encoded from the Y chromosome; this is consistent with the source HeLa cells being derived 

from a female subject [59]. Collectively, these data suggested that the shift in self peptide 

presentation by HLA class I molecules post VACV infection represented a global change in 

the overall protein metabolism of the cell and not a specific response to the infection.

 Several peptides uniquely presented after infection are derived from oncogenes

Proteomics and proteogenomics approaches have recently identified a few neo-epitopes 

derived from tumor specific antigens [56, 60-64]. The success of these approaches was 

predicated on the knowledge of the tumor ‘mutome’ —a collection of mutations within the 

tumor cell under study— encoded by non-synonymous single nucleotide polymorphisms 

revealed by exome and/or transcriptome analyses [57, 60-64]. As HeLa cells were originally 

isolated from a cervical tumor, we determined whether the collection of self peptides 

presented by the five HLA class I molecules under study here were derived from the HeLa 

‘mutome’. Therefore, the proteins from which self peptides were derived were searched 

against the TSGene Database containing 184 tumor samples, including 28 cervical cancers 

[48]. On average, ~10% of self peptides were derived from proteins that are known or 

potential oncogenes (Table 2 and Supplemental Table 2). Self peptides derived from known 

oncogene products or candidate cancer proteins were then searched against the TSGene 
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Database using BLAST to specifically identify self peptides that matched the mutated cancer 

protein sequence. We identified 16 HLA-A*01;01-, 34 HLA-A*02;01-, 13 HLA-B*07;02-, 

22 HLAB*35;01-, and 3 HLA-B*45;01-restricted self peptide sequences that match known 

cancer associated mutations (* in Table 2 and Supplemental Table 2). Hence, a direct 

analysis of the five self peptidomes revealed that a fraction of the self peptides presented by 

class I molecules were derived from HeLa mutome.

 Self peptidome presented after infection contains allopeptides

T cell activation by peptides induced for presentation under inflammatory conditions may be 

of great significance for HLA-matched transplant recipients responding to infections. In this 

regard, it is noteworthy that immunosuppressed transplant recipients are susceptible to 

cytomegalovirus infections [65-68]. This infection is known to induce acute allograft 

rejection [67, 68] and GVHD [65, 66]. These adverse outcomes would be further augmented 

if new peptides presented during infection contained allelic differences between the donor 

and recipient tissues as in allopeptides. Hence, recipient T cells would not be tolerized to 

such allopeptides. Therefore, in order to determine whether the self peptidomes presented 

after infection contains allopeptides, BLAST searches of the peptide sequences were 

performed against translated sequences from 297 human genomes. This analysis revealed 

variations of one to two amino acids in ~12% (range 9.6%—13.2%) of the peptides newly 

presented after infection (Table 3; Supplemental Table 4; red bars in Figure 4 and 

Supplemental Figure 2). This percentage is well above the false discovery rate calculated 

and presented in Materials and Methods suggesting the observed variability may be 

biologically relevant. In comparison, only about 2.7% (range 2.3%—3.4%) of the self 

peptides presented before infection displayed variation amongst the human population. This 

is less than the false discovery rate suggesting that the presentation of allopeptides in 

uninfected cells may be an artifact of incorrect peptide identification. The percentage of 

allopeptides presented after infection (12%) is similar to previous reports of variations in 

human MHC class I-associated peptides arising from genetic polymorphisms in the 

population [69].

We noted that the frequency of allopeptides (12%) was similar to the reported rates of 

unsuccessful transplants (10%) suggesting a possible relationship between allopeptides and 

transplantation success. However, the presentation of allopeptides would only affect clinical 

outcomes if those peptides are presented by cells in transplanted tissues. Search of the 

TiGER tissue expression database revealed that 75% of the proteins from which the 

allopeptides were derived are expressed at variable levels in commonly transplanted tissues 

such as the liver, heart, lung, kidney and colon ([49]; Figure 5 and Supplemental Figure 3).

 Discussion

Cumulatively, we have shown a profound shift in self peptides presented by MHC class I 

molecules after infection of HeLa cells with VACV. Depending on the HLA allele, the new 

self peptides represented between 30—80% of all peptides presented during infection. They 

were derived from proteins encoded by genes belonging to multiple cellular functional 

families and were broadly distributed across chromosomes. We did note that ~40% of the 
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proteins from which peptides were derived were responsive to type I interferon signaling 

which may play at least some role in the generation of these peptides uniquely presented 

after infection. Critically, a subset of the altered peptides contained allelic variations within 

the human population and the proteins from which they were derived were expressed in 

commonly transplanted tissues suggesting the potential to negatively affect the outcome of 

clinical tissue/organ allografts.

This study significantly extends previous reports of self peptides that are uniquely presented 

by HLA-A*02;01 and HLA-B*07;02 during INV, MeV and HIV infections [20-22]. While 

these previous studies reported the presentation of only 20 self peptides uniquely presented 

during infection, here, we report over 1,000 peptides presented by five different HLA class I 

molecules solely after infection with VACV, the largest study of its kind to date. Herein, we 

identified 4 of the 20 peptides uniquely presented after infection with INV [21], 3 of the 15 

peptides uniquely presented after infection with HIV [20], and neither of the two type I 

interferon-induced peptides presented after MeV infection [22]. Despite analysis of infected 

HeLa ,similar to previous studies, we observed two orders of magnitude greater number of 

peptides represented within the altered self peptidome than in the previous studies [20-22]. 

Perhaps the limited numbers of the total self peptides reported from past studies to be 

uniquely presented after infection with HIV, INV and measles was insufficient to detect a 

larger peptidome shift [20-22]. Critically however, alterations in the self peptidome have 

now been observed for five different HLA class I molecules and in response to multiple 

infections (HLA-A*02;01 and HLA-B*07;02): HIV, INV, MeV and VACV.

Despite a common core of host proteins responsive to infection [70], there is little overlap 

among other host proteins that are involved in cellular responses to VACV, MeV, HIV and 

INV infection [71-79]. This may, in part, explain the differences in the self peptidome shift 

reported here for VACV infection compared with HIV, MeV, and INV [20-22]. In addition, 

VACV encodes over 200 proteins [80, 81], including a number of proteins that alter cellular 

functions and immune response [79, 82-89]. In comparison, HIV genome encodes 15 

proteins [90], INV genome encodes 17 proteins [91], and MeV genome encodes 8 proteins 

[92]. The large number of proteins encoded by VACV many result in substantially different 

effects on the host cell protein metabolism compared with the limited host range factors of 

HIV, INV and MeV.

In addition to virus-induced changes in host cell metabolism, 40% of peptides uniquely 

presented after infection were derived from proteins responsive to host interferon signaling. 

Although not as effective as type II interferon, type I interferons have also been reported to 

induce immunoproteasomes [93-100], which in turn alters the processing of self and viral 

peptides for presentation by MHC class I molecules [101]. In response to both type I and 

type II interferon signaling, the metabolism of HeLa cells is altered [102-109]. Although it 

remains unknown whether VACV infection leads to upregulation and function of 

immunoproteasomes, the presentation of newly processed peptides represents a change in 

intracellular protein turnover that will include antigen processing by the immunoproteasome. 

It is also possible that the extent of self peptidome shift might vary between different viral 

infections and, if so, the mechanism underlying this process could be of interest for future 
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studies. For example, whether levels of cellular interferon response correlates with the 

magnitude of the self peptidome shift for different classes of viruses.

In recent years, much attention has been directed to the production of unique peptides 

through alternate translation pathways [110-117]. These cryptic peptides are produced from 

translation of alternate reading frames [118-122], read-through into the untranslated region 

[123], and frame shift mutations [124-126]. The peptides uniquely presented during VACV 

infection reported herein map to protein coding regions; however, it is possible that these 

proteins are generated through these alternate translation mechanisms. Determining whether 

such peptides are generated by translation of alternate reading frames or through mutations 

occurring during translation will require further analyses as infection [114, 115, 120] and 

perhaps interferon signaling may accentuate this process.

Infection of HeLa cells was confirmed by the identification of VACV-derived peptides 

presented by all HLA molecules studied. Those viral peptides presented by HLA-A*02;01 

and -B*07;02 were shown to contain a subset of peptides that elicit protective immune 

responses in HLA class I-transgenic mice [33]. With similar characterization, a subset of the 

HLA-A*01;01-, -B*35;01-, and -B*45;01-restricted peptides reported here may also 

represent CD8 T cell epitopes useful for the development of next-generation vaccines.

Examination of self peptides presented by the five different HLA class I molecules revealed 

that each HLA molecule had a different propensity to present an altered self peptidome after 

infection. The greatest variety of newly presented peptides was observed with HLA-A*02;01 

with 80.7% of the total peptides sequenced presented only after infection. HLA-B*07;02 

and -A*01;01 had an intermediate shift in the peptidome with 64.4% and 56.6%, 

respectively, of total peptides presented only after infection. The presentation of unique self 

peptides after infection was less striking for HLA-B*35;01 (35.4%) and -B*45;01 (31.2%). 

It remains to be determined whether this variability among HLA class I molecules to present 

a shifted peptide repertoire after infection has a biological consequence, e.g., whether it 

correlates with the susceptibility to allograft rejection.

Biologically, the presentation of self peptides by MHC class I molecules annotates the 

internal state of the cell. Our data indicated that VACV infection profoundly impacted the 

cellular metabolism and, hence, the altered state of the cell. Significantly, a fraction of the 

self peptides presented by class I molecules were derived from HeLa mutome. This finding 

implies that the knowledge of the self peptidomes of non-cancer and cancer cells from the 

same individual can reveal neo-epitopes that can be targeted by tumor-specific T cells. 

Considering the finding that viral infections can alter the presentation of self peptides, 

cancer therapies based on oncolytic viruses can coax the tumor cell to display neo-epitopes 

that are coded by genes induced by viral infections [127, 128].

Of clinical concern is whether T cells recognize the peptides from the shifted self 

peptidome. Aire-regulated peptide expression in the thymus is thought to lead to the 

presentation of self peptides derived from proteins ordinarily not expressed by the thymus 

[129, 130]. However, if these peptides are presented only after infection and are not 

presented during T cell development, self-reactive T cells may persist in the periphery. 
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Following infection, T cells may be activated under an inflammatory environment causing 

additional immunopathology. Recognition of cross-reactive peptides seems to be dependent 

upon only select amino acid residues that vary for each particular T cell receptor [131]. 

Similarities within five amino acids between self and foreign peptides are sufficient to 

induce cross-reactive T cells after infection potentially resulting in autoimmunity [132]. Yet, 

identification of these peptides proves to be difficult, as no single immunologic property is 

able to computationally predict immunogenic peptides [56].

Our results may help to explain the complication and ~10% failure rate of transplantation 

even amongst HLA-matched allograft recipients. Of the peptides that were identified to be 

uniquely presented after infection, ~12% displayed allelic variation amongst the human 

population. These potential allopeptides in transplanted tissues would remain innocuous 

until the recipient acquired an infection. The presentation of new peptides during the 

inflammatory conditions generated in response to infection may result in T cell activation 

and recognition of these potential allo-epitopes. Again, if certain HLA class I molecules are 

less likely to present novel peptides after infection, patients that express them would be less 

susceptible to GVHD or allograft rejection. Analysis of the proteomes of donor and recipient 

transplant patient may identify these allopeptides prior to committing to the organ transplant. 

Following the recent publication of drafts of the human proteome, these comparisons may 

become more commonplace, leading to better proteomic matches for organ transplants, 

preventing allopeptide presentation after infection, and ultimately more successful 

transplants [25-28].
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BLAST basic local alignment search tool

Cn Correlation coefficient

GVHD graft versus host disease

HIV human immunodeficiency virus

HLA human leukocyte antigen

INV influenza virus

MeV measles virus

MPXV monkeypox virus
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VACV vaccinia virus

VARV variola virus
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Statement of clinical relevance

MHC-encoded class I molecules present peptides derived from cellular proteins to CD8 

informing them of a cell's milieu intérieur (cellular homeostasis). Cellular homeostasis is 

altered under a variety of stressed conditions, including during microbial infections. 

Whilst there were hints that infected cells altered the presentation of self peptide 

repertoire, this notion was not fully explored. Herein, through mass spectrometric 

analysis of thousands of self peptides isolated from HLA class I molecules (the largest 

study of its kind to date), we observed a dramatic shift in the self peptide repertoires 

presented after infection of HeLa cells with vaccinia virus. Of significant clinical import 

was the revelation that a fraction of the self peptides were derived from tumor-specific 

antigens. Furthermore, the self peptides uniquely presented after infection contained 

variants of such peptides —called allopeptides— within the human population. 

Approximately 12% of the self peptides uniquely presented after infection were potential 

allopeptides, the recognition of which can result in graft-versus-host-disease or transplant 

rejection. The proportion of allopeptides was very similar to the reported rate of 

transplant complication and failure (~10%). Our study suggests that deep sequencing and 

proteomics analyses of self peptides may enhance the success of clinical transplant 

outcome and tumor immunotherapies.
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Figure 1. Numerous unique self and viral peptides are presented after VACV infection
Mass spectrometry was used to sequence peptides eluted from the indicated soluble HLA 

class I molecules. Comparison of the pre- and post-infection samples identified a significant 

fraction of viral peptides (blue) presented after infection. In addition, large alterations in the 

self peptidome were observed with some peptides disappearing (red), unchanged (green), or 

newly presented (purple) after infection. The total number of peptides sequenced for each 

HLA class I molecule is annotated under each chart.
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Figure 2. Self peptidome shift after infection with VACV WR strain
The peptides presented by the indicated soluble HLA class I molecules were sequenced by 

mass spectrometry. The number of self peptides (Cn>1.5) detected 0, 1, 2 or 3 days after 

infection are reported in the single or overlapping regions for each HLA allele. The total 

number of peptides (Cn>1.5) sequenced is reported as n=# under each day.
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Figure 3. Proteins from which newly presented peptides are derived represent numerous 
functional families
Panther GO Biological Process identification of the proteins from which self peptides 

uniquely presented during VACV infection of HeLa cells are derived. Proteins were searched 

using the Panther database and presented as the proportion of peptides allocated to each 

functional classifications.
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Figure 4. Peptides presented after infection by HLA-B*35;01 are derived from proteins encoded 
by genes dispersed across the chromosomes
The number of proteins from which peptides presented only after infection were derived is 

enumerated for HLA-B*35;01 (gray bars). Due to size limitations, the locations of each 

peptide were grouped according to major banding patterns for each chromosome (e.g., 1p36) 

along the vertical axis, as in reference [26]). Note the scale of the x-axis varies for each 

chromosome. The number of proteins containing allopeptides in the human population are 

enumerated for each location (red bars).
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Figure 5. Proteins from which newly presented HLA-B*35;01-restricted allopeptides are derived 
are expressed in transplanted tissues
Proteins expressed by the colon, heart, kidney, liver and lung were identified by searching 

the TiGER database of tissue expression. This database consists of expression data from 

microarray, real-time PCR, and proteomic. Studies and is reported as a fold change 

compared with housekeeping genes/proteins used in each respective assay. These proteins 

are variably expressed in the tissue yet all tissues express some proteins from which new 

peptides were derived after infection.
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Table 2

Characterization of HLA-B*35;01-restricted self peptides presented during active infection

Protein Peptide sequences
a

Prior Reports
b

Interferon Responsive
c

Cn
d

DPI
e

# Hits
f

Oncogene status
g

VACV
h

AHSA1 SPEELYRVF 3.6857 1,3 4

AIM1 LPDNSLKVF 4 2.2947 3 2 candidate
KVF7DGY

i

APEH VPFKQGMEY 1 2

ARHGEF18 LPSGVGPEY 1 2.3883 1 2

ARPC4 KPVEGYDISF 3.4382 3 4

ATP5F1 VPVPPLPEY 1 2.4713 3 7

ATP6V1B2 HPIPDLTGY 2 1 2

BLMH KPLFNMEDKI 2.1907 1 1

CANX APPSSPKVTY 1 2.5506 3 1

CAPN1 LPIKDGKLVF 2.2217 3 1

CCT4 HPTIISESF [1] 2.2973 1 2 H1Y;I5F;S8T

CTNNA1 NPVQALSEF 2.6248 1 3

DDOST FPDKPITQY 1 2.8022 1,2 7

DDX21 SPPKDVESY 2.4713 3 2

DDX50 SPPQDVESY 2.8877 2,3 5

DEK FPFEKGSVQY 2 2.6723 1,3 3 known

DNAJC13 LPVARFLKY 1 2.0127 3 1

EEF1G FPAGKVPAF 2.6279 1,3 5

EEF2 LPSPVTAQKY 3 3 4

LPVNESFGF 2.275 1 3

EFHD2 NPYTEFKEF 2.7636 3 1

ERH NPNSPSITY [2] 3.0901 1,2,3 15

FH MPTPVIKAF 2 2.8021 1 6
known

*

FLNA VPASLPVEF 2 2.0951 3 2 candidate

GLS DPRLKECMDM 16 2.1995 1 1

GOT2 LPIGGLAEF 2.1101 1 5

HDGF FPYEESKEKF 1 3 5

HPRT1 IPDKFVVGY 3.1871 1,3 7

HSPA8 IPTKQTQTF 1 2.4455 3 2 TQ6NF
K4R;Q5K; Q7R

QPGVLIQVY 2.2033 3 1

ILF2 KPAPDETSF 2.1768 1 1

ISOC1 IPVIVTEQY 1 2.4097 1 2

LGALS3 FPFESGKPF 2.2508 1 1

LTA4H VPYEKGFAL 4 2.4068 3 3

MPI RPVEEIVTF 1 2.4651 3 4 candidate
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Protein Peptide sequences
a

Prior Reports
b

Interferon Responsive
c

Cn
d

DPI
e

# Hits
f

Oncogene status
g

VACV
h

MTHFD1 TPVPGGVGPM 1 2.5411 1 3

MYO1C APVGGHILSY 2.3905 3 2

MYO1G DPIGGHIHSY 2.6728 3 4

NARG1 TPLEEAIKF 2.0495 1 1 candidate

NDUFS2 LPYFDRLDY 2.1946 3 1

NIT2 IPEEDAGKLY 2.7275 1 1

NONO RPSGKGIVEF 1 2.4937 2,3 7

NUP210 FPAPAKAVVY 7 2.0796 3 2 known

PABPC1 VPNPVINPY 2 3.4778 1,2 2 candidate

PDCD6IP FPQPPQQSY 2.1958 1 1 candidate

PLEC1 LPTEEQRVY 2.171 3 2

PPA2 EPMNPIKQY 2.9655 3 1

PRPF8 SPIPFPPLSY 2 2.7818 1,3 17

PSMD7 LPINHQIIY 2.6684 3 2 candidate

RAD23A FPVAGQKLIY 2.7215 3 2

RAD23B FPEGLVIQAY 1 2.2462 1 1

RPL15 RPVPKGATY 3 2.725 3 2

RPN1 APDELHYTY 2.1773 1,3 2

SFRS2IP LPADVQNYY 2.6707 1 2 known

SLC25A6 IPKEQGVLSF 7 2.2361 1 1

SPTBN1 YPNVNIHNF 1 2.5082 3 2

SRRM2 SPRVPLSAY 2.2579 3 2

STIP1 NPFNMPNLY 2.2604 1 1

SYNCRIP DPYYGYEDF 1 3.1554 3 3 candidate

SYTL3 RPDGTLNSF 2.1761 1 1 G4S;T5E; F9S

TMOD3 IPIPTLKDF 1 2.6011 1 3

TMPO TPFKGGTLF 2 2.7071 1,3 8

FPEISTRPPL 2.6193 3 6

TOP2A LPVKGFRSY 2 2.2794 1 1

TUBB3 YPDRIMNTF 1 2.6326 3 1

UBE2L3 YPFKPPKITF 2.0431 1 1

VCP YPVEHPDKF 2.9714 1 4

a
Potential peptides were determined to be derived from proteins encoded by the HeLa genome.

b
Prior reports according to immune epitope data base (IEDB; www.iedb.org); blank, this study

c
Number of entries reporting type I interferon responsiveness for the protein

d
Correlation coefficient represents the number of peak identities determined between the theoretically and experimentally derived spectra for a 

given parent ion normalized to the charge state of the peptide

e
Days post infection of HeLa cultures with VACV at which the peptide was identified
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f
Total number of times a given peptide sequence was identified by mass spectrometry

g
Peptides derived from proteins that represent known or potential oncogenes

*
indicates mutated self peptide

h
Amino acid substitutions compared with VACV proteome. Only amino acid substitutions from sequences >66% identical are annotated. Blank, no 

significant homology

i
Amino acid changes for homologous VACV epitopes; blank, no significant homology
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Table 3

Potential allopeptides presented by HLA-B*35;01 after infection with VACV

Gene
Variants

VACV
c

A
a

B
b

C
b

PABPC1 VPNPVINPY VPHPVINPY

CNOT8 FPSIYDVKY SPSIYDVKY FPVIYDVKY

UPP1 FPALFGDVKF FPALFGDVKV LPAMFGDVKF

LOC441837 DPFIDLNYM DPFIDLKYM

LOC387820 SPEDIKKAY SPEEIKKAY

ACTB APEEHPVLL APEEHPILL

CNOT7 FPVIYDVKY FPSIYDVKY

USP11 TPARDYNNSY TPARDYSNSS

UBE2D2 YPFKPPKVAF YPFKPPKVTF

C1D YPVEIHEYL YPVEIHDYL

ADAR NPISGLLEY NPVSGLLEY

DDX50 SPPQDVESY SPPQDIESY

ITM2B DPANIVHDF DPADIIHDF

DDOST FPDKPITQY FPDKPITQV FPDKRITQY

KIAA0828 GPFKPNYYRY GPFKPDHYRY

CCND1 TPHDFIEHF TPHDFIEHI

HNRPD TPEEKIREYF ATEEKIREYF

MLSTD2 NPFHWGEVEY NPFHWGEVGM

THRAP1 KPINKSEHL KPVNKSEHL

EFHD2 NPYTEFKEF NPYTEFPEF

CCT6A HPRIITEGF HPRIIAEGF

BACH1 SPEPGQRTF *
PEPGQRTF

HSPA4L APFSKVITF APFSKVLTF

NIT2 IPEEDAGKLY IPEEDAGKLD

RPL15 RPVPKGATY HPVPKGATY RPVPKGVTY

OTUB1 FPEGSEPKVY FPEGSEPQVY

ROR2 FPELGGGHAY FPELNGGHSY

ARGBP2 FPISYVEKL FPISYVEKP

MYO1G DPIGGHIHSY DPIGGHINNY

DEK FPFEKGSVQY FPFEKGSAQY

UBE2E1 YPFKPPKVTF YPFKPPKITF

KIF1A IPQLCEDLF IPQLCEELF

TUBB3 YPDRIMNTF YPDRIINTF

CTNNA1 NPVQALSEF SPVQALSEF

SF3B4 RPITVSYAF HPITVSYAF
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Gene
Variants

VACV
c

A
a

B
b

C
b

ATP6V1B2 HPIPDLTGY HPIPDLTGF

C20orf172 HPIHQGITEL HPIHQGITEV

ADAR NPVGGLLEY NPVSGLLEY

MTHFD1 TPVPGGVGPM TPVSGGVGPM

SMARCA2 APSVVKISY APSVVKVSY

KIAA1374 TPYPAILHEY PPYPAILHEY

SPTBN1 YPNVNIHNF YPNVNVHNF

KIAA1102 SPLGGERPF SPLGGQRPF

UBAP2 NPYPGDVTKF NPYSGDVTKF

SMARCA5 APFHQLRISY APFHQLRIQY

NT5C FPEEPHVPL SPEEPHVPL

DIAPH1 NPVSWVQTF NPVSWVESF

CTPS RPIKPSPPY RPMKPSPPY

HSPA8 IPTKQTQTF IPTKQTQIF TQ6NF
K4R;Q5K;Q7R

SUHW2 NPIVLLSDF NPIVLLSNF

CP FPRTPGIWL FPRTPGLWL

MYO1C APVGGHILSY IPVGGHIISY

UBP1 SPWPDAPTAY SPWPDASTAY

DHX38 TPLPTPSYKY TPLPAPSYKY

LPP YPVTGPKKTY CPVTSPKKTY

FLJ10706 LPLWQHISF SPLWQHIGF

FHL2 KPITTGGVTY MPITTGGVTY

TTF1 FPFRDIFYY FPSRDIFYY

UBE2D1 YPFKPPKIAF YPFKPPKITF

C6orf150 VPRIQLEEY VPRIQLEDF

HDHD4 KPAPSIFYY LPAPSIFYY

KIF21A HPNNVVSVKY HPNNVVSIKY

LOC441032 HPGQISAGY HPGQISSGY

AHCY GPFKPDHYRY CPFKPDHYRY

FLJ14827 APHTNGPQDL VPHTNGPQDL

BNIP2 MPESSQPNY TPESSQPNY

UBE2V2 LPQPPEGQTY LPQPPEGQCY

TUSC4 HPTLGPKITY HLTLGPKITY

NME2 RPFFPGLVKY RPFFAGLVKY

TCP1 HPTSVISGY HPTSVISSY

FLNB IPYLPITNF VPYLPITNF

LOC220717 VPHSIINGY VPHSIIDGY
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Gene
Variants

VACV
c

A
a

B
b

C
b

PSMC4 LPLTHFELY LPVTHFELY

ZNF581 SPCPQPLAF SPCPQPLPF

TFCP2L2 LPLNIQVDTY LPLNIQIDTY

TOP2A LPVKGFRSY LPVNGFRSY

PHCA YPWLRGLGY YPWLRGLGI

ASCC3L1 RPVPLEQTY RPVPLERTY

SLC25A6 IPKEQGVLS F IPKDQGVLSF

LOC391387 HPWKVMPDL HPWEVMPDL

LOC339077 LPKLEKAARL LPKLERAARL

HSPA8 QPGVLIQVY QPGVFIQVY

SUHW1 NPIVLLSNF NPIVLLSDF

VIL2 FPWSEIRNI FPWNEIRNI

ING1 LPIDPNEPTY MPVDPNEPTY

FLJ14803 HPKYPDGKTF HPKYRDGKTF

LOC391387 HPWKVMPDLY HPWEVMPDLY

GAPD APSADAPMF TPSADAPMF

CARD8 HPHPEDIKF RPHPEDIKF HRHPEDIKF

NACA SPASDTYIVF SPASDTYVVF

TPMT DPTKHPGPPF DPTKHAGPPF

LOC391062 RPNSNGSQFF PNTNGSQFF

ANXA7 YPQPPSQSY YPQPPSQSI

RYR1 SPHEQEIKFF SPRDQEIKFF

ADIPOR2 APLQEKVVF PPLQEKVVF

FLJ10774 IPWTVSEQF IPWTVSEQV

ALB VPQVSTPTL VPEVSTPTL

TIP120A GPLVSKVKEY GPLVVKVKEY

PTPRS WPDHGVPEY WPDHGVPEH

GRK5 KPENILLDDY KPENILLDDH E3D;D8F;Y10S

ENO1 SPDQLADLY SPNQLADLY

ARHGEF1 VPVPPNVAF PPVPPNVAF

SORCS3 SPVHCLLPF SPVHCLLPQ DPVHCLLPY

MAGI 1 KPGEGLGMY KPSEGLGMY

ITGB4 RPLQGYSVEY RPLQGYSVAS

HLA-C HPLSDHEATL HPISDHEATL

SLC17A6 MPLAGILVQY MPLAGVLVQY

UBE2L3 YPFKPPKITF YPFKPPKVTF

PIK3C2B LPQLVQALKY LSQLVQALKY

CDC42 FPSEYVPTVF FPGEYVPTVF
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Gene
Variants

VACV
c

A
a

B
b

C
b

ProSAPi P1 DPGRDPLLAF DPGKEPLLAF

AATF LPQPDVFPLF LPQPDVFPVF

RER1 LPTKQNEEF YPTKQNEEF LPTIQNEEF

GRK5 SPDYWGLGCL SPDWWGLGCL

PACS2 LPIAEAMLTY LPVAEAMLT

NDUFB9 FPDSPGGTSY FPDSPRGTSY

LIPC QPGCHFLELY QPGCHSLELY

HNRPK FPNTETNGEF FPNTETSGEF

DHRS4 SPSPGFSPY IPSPGFSPY

METAP2 FPKGQECEY FPKGQESEY

SMOC1 RPLPGTSTRY RPIPGTSTRY

DHX40 MPDHVIPEI MPDHVIPQF

PREI3 TPKECPAIDY TPKECRAIDY

PCDHB5 APETVVAVF SPETVVAVF

SMARCE1 MPSTPGFVGY MPSTPSFVGC

DSC3 IPCSMQENSL IPCSMLENSL

RHOC FPEVYVPTVF FPEEYVPTVF

NOTCH1 CPPGFTGSY CPPGFTGDY

GLCCI1 CPDKNKVNF CPDKNKVHF

BIRC5 DPIGPGTVAY DPIGPGTVA

SMURF2 NPYYGLFQY NPYYGLFEY

MEN1 APDPPGGLTY APDPHGGLTY

NUP210L SPLTPGLAIY KSLTPGLAIY

ING5 MPVDPNEPTY LPIDPNEPTY

JUP SPVESVLFY SPVDSVLFY

UBE2D2 SPYQGGVFF RPYQGGVFF

GPNMB GPQLMEVTVY GPQFMEVTVY

PURB LPAQGLIEF LPAQGMIEF

CPA4 LPVANPDGY LPVTNPDGY

LOC440059 CPIMDLTLY CPIMDLTL

CDADC1 LPDANTDFY LPDANTDLY

TINP1 TPQGAVPAY IPQGAVPAY

IFI16 MPPSTPSSSF MPPTTPSSSF

AATF LPQPDVFPL LPQPDVFPVF

FMNL3 DPSVTRKKF DPAVTRKKF

B4GALT6 APGIANTYLF APGIVNTYLF

GPR VPVVVVFLFL IPVVVIFLFL

ATXN10 HPDKKIVAY CPDKKIVAY
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*
Indicates corresponding amino acid is deleted in variant

a
Peptide sequence identified by mass spectrometry

b
Alternate peptide sequences identified by BLAST search

c
Amino acid substitutions compared with VACV proteome. Only amino acid substitutions from sequences >66% identical are annotated. Blank, no 

significant homology.
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