### **Tennessee State University**

## Digital Scholarship @ Tennessee State University

**Chemistry Faculty Research** 

**Department of Chemistry** 

6-1-2014

## Octyl (2E)-2-[2-(diphenylphosphanyl)benzylidene]hydrazinecarbodithioate

Izuddin Asri University of Brunei Darussalam

Malai Haniti S. A. Hamid University of Brunei Darussalam

Aminul Huq Mirza University of Brunei Darussalam

Mohammad Akbar Ali University of Brunei Darussalam

Mohammad Rezaul Karim Tennessee State University

Follow this and additional works at: https://digitalscholarship.tnstate.edu/chemistry-faculty

Part of the Chemistry Commons

### **Recommended Citation**

I. Asri, M.H.S.A. Hamid, A.H. Mirza, Mohammad Akbar Ali, Mohammad Rezaul Karimb "Octyl (2E)-2-[2-(diphenylphosphanyl)benzylidene]hydrazinecarbodithioate" Acta Crystallogr Sect E Struct Rep Online. 2014 Jun 1; 70(Pt 6): o633-o634. https://dx.doi.org/10.1107%2FS1600536814008459

This Article is brought to you for free and open access by the Department of Chemistry at Digital Scholarship @ Tennessee State University. It has been accepted for inclusion in Chemistry Faculty Research by an authorized administrator of Digital Scholarship @ Tennessee State University. For more information, please contact XGE@Tnstate.edu.



Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

### Octvl (2E)-2-[2-(diphenylphosphanyl)benzylidene]hydrazinecarbodithioate

### Izuddin Asri,<sup>a</sup> Malai Haniti S. A. Hamid,<sup>a</sup> Aminul Huq Mirza,<sup>a</sup> Mohammad Akbar Ali<sup>a</sup> and Mohammad Rezaul Karim<sup>b</sup>\*

<sup>a</sup>ChemicalStudies, Faculty of Science, University of Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei, and <sup>b</sup>Department of Chemistry, Boswell Science Complex, Tennessee State University, Nashville, 3500 John A Merritt Blvd, Nashville, TN 37209, USA Correspondence e-mail: mkarim@tnstate.edu

Received 14 March 2014; accepted 14 April 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.043; wR factor = 0.111; data-to-parameter ratio = 15.0.

The title compound,  $C_{28}H_{33}N_2S_2P$ , adopts the thione tautomeric form, as supported by the C–S distance [1.6744 (18) Å]. The Schiff base exhibits an E conformation about the C-N bond but a Z conformation about the C-N bond. The terminal chain is disordered over two sets of sites with an occupancy ratio of 0.732 (3):0.268 (3). In the crystal, pairs of N-N-H hydrogen bonds between the thione groups link neighbouring molecules into centrosymmetric dimers.

### **Related literature**

For Schiff bases derived from S-alkyl/aryl esters of dithiocarbazic acid, see: Akbar Ali et al. (2012, 2013); Hamid et al. (2009); Akbar Ali et al. (2005). For their chemotherapeutic properties, see: Tarafder et al. (2002); Akbar Ali & Livingstone (1974); Akbar Ali et al. (2002); Hossain et al. (1996). For related structures, see: Su et al. (1999); Song et al. (2009); Shanmuga Sundara Raj et al. (2000). For standard bond lengths, see: Allen et al. (1987).



## organic compounds

15526 measured reflections

 $R_{\rm int}=0.025$ 

5343 independent reflections 4954 reflections with  $I > 2\sigma(I)$ 

### **Experimental**

#### Crystal data

| $C_{28}H_{33}N_2PS_2$           | $\gamma = 65.013 \ (1)^{\circ}$           |
|---------------------------------|-------------------------------------------|
| $M_r = 492.65$                  | V = 1290.2 (2) Å <sup>3</sup>             |
| Triclinic, $P\overline{1}$      | Z = 2                                     |
| a = 11.2068 (12)  Å             | Mo $K\alpha$ radiation                    |
| b = 11.4956 (12)  Å             | $\mu = 0.29 \text{ mm}^{-1}$              |
| c = 11.7728 (13)  Å             | $T = 100  { m K}$                         |
| $\alpha = 86.623 \ (1)^{\circ}$ | $0.60 \times 0.60 \times 0.38 \text{ mm}$ |
| $\beta = 70.538 \ (1)^{\circ}$  |                                           |
|                                 |                                           |

#### Data collection

| Bruker APEXII CCD                      |
|----------------------------------------|
| diffractometer                         |
| Absorption correction: multi-scan      |
| (SADABS; Sheldrick, 2002)              |
| $T_{\min} = 0.846, \ T_{\max} = 0.899$ |
|                                        |

### Refinement

| H atoms treated by a mixture of                            |
|------------------------------------------------------------|
| independent and constrained                                |
| refinement                                                 |
| $\Delta \rho_{\rm max} = 1.30 \text{ e } \text{\AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$ |
|                                                            |
|                                                            |

### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H      | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------|----------|--------------|--------------|---------------------------|
| $N2-H2N\cdots S2^{i}$       | 0.90 (2) | 2.45 (2)     | 3.3337 (17)  | 168 (2)                   |
| C                           | 1 1 1 2  | 1.0          |              |                           |

Symmetry code: (i) -x + 1, -y + 2, -z + 2.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).

IA, MHSAH, MAA and AHM thank University Brunei Darussalam for support. MRK acknowledges support from the Department of Chemistry at Tennessee State University.

Supporting information for this paper is available from the IUCr electronic archives (Reference: BQ2394).

### References

- Akbar Ali, M., Bernhardt, P. V., Jason, M. A. H. B., Farlow, A. J., Hanson, G. R., Yeng, L. L., Mirza, A. H. & Wieghardt, K. (2013). Inorg. Chem. 52, 1650-1657
- Akbar Ali, M. & Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101-132.
- Akbar Ali, M., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141-148.
- Akbar Ali, M., Mirza, A. H., Fereday, R. J., Butcher, R. J., Fuller, J. M., Drew, S. C., Gahan, L. R., Hanson, G. R., Moubaraki, B. & Murray, K. S. (2005). Inorg. Chim. Acta, 358, 3937-3948.
- Akbar Ali, M., Mirza, A. H., Hamid, M. H. S. A., Aminath, N. & Bernhardt, P. V. (2012). Polyhedron, 47, 79-86.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Hamid, M. H. S. A., Akbar Ali, M., Mirza, A. H., Bernhardt, P. V., Moubaraki, B. & Murray, K. S. (2009). *Inorg. Chim. Acta*, **362**, 3648–3656.
- Hossain, M. E., Alam, M. N., Akbar Ali, M., Smith, F. E. & Hynes, R. C. (1996). *Polyhedron*, **15**, 973–980.
- Shanmuga Sundara Raj, S., Yamin, B. M., Yussof, Y. A., Tarafder, M. T. H., Fun, H.-K. & Grouse, K. A. (2000). *Acta Cryst.* C56, 1236–1237.
- Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Song, L.-H., Zhang, X., Jiang, K. & Yang, S.-X. (2009). Acta Cryst. E65, 0356.
   Su, C. Y., Yang, X. P., Kang, B. S., Yu, K. B., Tong Ye, X. & Mak, T. C. W. (1999). Bull. Chem. Soc. Jpn, 72, 2217–2222.
- Tarafder, M. T. H., Khoo, T. J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691–2698.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

# supplementary materials

Acta Cryst. (2014). E70, o633-o634 [doi:10.1107/S1600536814008459]

## Octyl (2*E*)-2-[2-(diphenylphosphanyl)benzylidene]hydrazinecarbodithioate Izuddin Asri, Malai Haniti S. A. Hamid, Aminul Huq Mirza, Mohammad Akbar Ali and Mohammad Rezaul Karim

### 1. Comment

In recent years, considerable attention has been focused on Schiff bases derived from S-alkyl/aryl esters of dithiocarbazic acid (M. Akbar Ali et al. 2013, M. Akbar Ali et al. 2012) as they belong to a promising class of potentially bioactive chelating agents containing mixed hard and soft donor atoms. These organic chelators could also lead to the formation of coordination compounds with useful chemotherapeutic properties (Tarafder et al., 2002; Akbar Ali et al., 2002; Akbar Ali et al., 1974; Hossain et al., 1996). In view of less crystallographic data available on Schiff bases containing mixed hard and soft donor atoms such as nitrogen, sulfur and phosphorus, the new Schiff base,  $C_{28}H_{33}N_2S_2P$  (I) was synthesized by the reaction of S-octyl dithiocarbazate with 2-(diphenylphosphino)benzaldehyde in ethanol. The crystal is triclinic, space group P-1. The asymmetric unit contains one molecule of the compound  $C_{28}H_{33}N_2S_2P$ . The terminal chain C11 to C16 is disordered into two positions with occupancy ratio = 73:27. Restraints in bond lengths and thermal parameters were applied to the disordered parts. H atom of N2 was located from different map and refined with restraints in bond length and thermal parameters. Final R values are R1 = 0.0429 and wR2 = 0.1084 for 2-theta up to 55°. Like most Schiff bases derived from S-alkyl/aryl esters of dithiocarbazic acid, the Schiff base, I also remains in its thione tautomeric form as supported by the C8-S2 distance [1.6744 (18) Å], which is typical of double bonds and are by far the shortest C-S distances observed so far among the Schiff bases derived from S-alkyl/aryl dithiocarbazates (Hamid et al. 2009, Akbar Ali et al. 2005). The Schiff base also remains in an E configuration about the C7-N1 bond but a Z configuration about the C8-N2 bond. The C7-N1 bond distance compares well with that of the C=N double bonds in other related compounds (Su et al. 1999, Song et al. 2009). The C8-N2 bond distance [1.337 (2) Å] indicates that the N2 nitrogen atom is  $sp^2$ hybridized and the bond is closer to a double than a single bond (Allen et al. 1987). The N1-N2 bond in the Schiff base is shorter than a single N-N bond. A comparison of the N1-N2 distance [1.378 (2) Å] with that in S-benzyl dithiocarbazate [1.406 (3) Å] (Shanmuga Sundara Raj et al. 2000) indicates that there is a significant  $\pi$ -charge delocalization along the C-N-N-C chain. There is intermolecular hydrogen bonding between the hydrazine nitrogen atom N(2) of one molecule and the thione sulfur atom S2 of another molecule (Fig. 2) resulting in H-bonded centrosymmetric dimers. The H-bonding stabilizes the E and Z conformations about the C7-N1 and C8-N2 bonds, respectively.

### 2. Experimental

A hot solution of *S*-n-octyldithiocarbazate (0.16 g, 0.7 mmol) in absolute ethanol (10 ml) was mixed with a solution of 2di(phenylphosphino) benzaldehyde (0.21 g, 0.71 mmol) in the same solvent (5 ml). The resulting mixture was heated on a steam bath for 15 minutes and then left to cool. The yellow crystals that had formed were filtered off, recrystallized from an ethanol/chloroform mixture and dried *in vacuo*. Yield = 0.14 g (90%); m.p. = 114–116 °C; IR (cm<sup>-1</sup>): 3106 (N—H), 3068, 3048 (=CH, Ar), 1560 (C=N), 1024 (C—S), 1097 (C=S); UV-Vis:  $\lambda_{max}/nm$ , (log  $\varepsilon$  (dm<sup>3</sup> cm<sup>-1</sup> mol<sup>-1</sup>): 374(5.369); <sup>1</sup>H NMR (p.p.m., CDCl<sub>3</sub>): 10.23 (1*H*, s, –NH), 8.64 (1*H*, d, CH=N), 8.13 (1*H*, d, Ar), 7.66 – 7.22 (12*H*, m, Ar), 6.91 (1*H*, m, Ar), 3.25 (2*H*, t, CH<sub>2</sub>), 1.77 – 1.22 (12*H*, m, aliphatic protons), 0.88 (3*H*, t, CH<sub>3</sub>); <sup>13</sup> C NMR [p.p.m., CDCl<sub>3</sub>]: 199.6 (C=S), 143.7 – 126.7 (C=N, Ar—C), 34.7 (–CH2—C=S), 31.8, 29.2, 29.2, 29.1, 28.5, 22.7 (6xCH<sub>2</sub>), 14.1 (–CH<sub>3</sub>); Anal.calcd. for C<sub>28</sub>H<sub>33</sub>N<sub>2</sub>S<sub>2</sub>P: C 68.26, H 6.75, N 5.69; Found (%) C 69.35, H 6.15 N 5.68; MS/EI, m/z (I,%) for C<sub>28</sub>H<sub>33</sub>N<sub>2</sub>S<sub>2</sub>P (481.59 g/mol): 304.1 [M±C=SSOctyl] (17), 288.1 [M±NHC=SSOctyl] (100), 183.0 [PPh2] (22), 146.1 [SOctyl] (5).

The IR spectrum was recorded as KBr disc on a Perkin-Elmer 1600 F T IR spectrometer. The 1H NMR spectrum was run in CDCl3 on a Bruker Advance, 400 MHz spectrometer in the Department of Chemistry, Tennessee State University, USA. Elemental analysis for C, H and N was done by the Elemental Analysis Laboratory, Department of Chemistry, National University of Singapore. The El mass spectrum was recorded on an Agilent Mass Spectrometer 5975 C MSD (with direct probe). The X-ray data were collected at the X-ray Diffraction Laboratory, Department of Chemistry, National University of Singapore using a Bruker-AXS Smart Apex CCD single-crystal diffractometer.

### 3. Refinement

The terminal chain C11 to C16 was disordered into two positions with occupancy ratio = 73:27. Restraints in bond lengths and thermal parameters were applied to the disordered parts. H atom of N2 was located from different map and refined with restraints in bond length and thermal parameters. Other H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.95–0.99 Å, Uiso(H) = 1.2Ueq(C). Final *R* values are R1 = 0.0429 and wR2 = 0.1089 for 2-theta up to 55°.



### Figure 1

ORTEP diagram of the title compound only with the major part of the disordered terminal chain.



### Figure 2

H-bonded centrosymmetric dimers of the title compound.

### Octyl (2E)-2-[2-(diphenylphosphanyl)benzylidene] hydrazinecarbodithioate

Crystal data C<sub>28</sub>H<sub>33</sub>N<sub>2</sub>PS<sub>2</sub>  $M_r = 492.65$ Triclinic, *P*1 Hall symbol: -P 1 a = 11.2068 (12) Å b = 11.4956 (12) Å c = 11.7728 (13) Å  $a = 86.623 (1)^{\circ}$   $\beta = 70.538 (1)^{\circ}$   $\gamma = 65.013 (1)^{\circ}$  $V = 1290.2 (2) \text{ Å}^{3}$ 

### Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2002)  $T_{\min} = 0.846, T_{\max} = 0.899$ 

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.043$  $wR(F^2) = 0.111$ S = 1.045343 reflections 356 parameters 209 restraints Z = 2 F(000) = 524  $D_x = 1.268 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5343 reflections  $\theta = 2.2-28.3^{\circ}$   $\mu = 0.29 \text{ mm}^{-1}$ T = 100 K Block, yellow  $0.60 \times 0.60 \times 0.38 \text{ mm}$ 

15526 measured reflections 5343 independent reflections 4954 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.025$  $\theta_{max} = 26.5^\circ, \ \theta_{min} = 1.8^\circ$  $h = -14 \rightarrow 14$  $k = -14 \rightarrow 14$  $l = -14 \rightarrow 14$ 

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0483P)^2 + 1.3326P] \qquad \Delta \rho_{\text{max}} = 1.30 \text{ e} \text{ Å}^{-3}$ where  $P = (F_o^2 + 2F_c^2)/3 \qquad \Delta \rho_{\text{min}} = -0.51 \text{ e} \text{ Å}^{-3}$  $(\Delta/\sigma)_{\text{max}} = 0.001$ 

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x             | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|---------------|--------------|--------------|-----------------------------|-----------|
| P1  | -0.07934 (5)  | 1.15477 (4)  | 1.32348 (4)  | 0.01927 (12)                |           |
| S1  | 0.51929 (5)   | 0.64877 (4)  | 0.91914 (4)  | 0.02410 (13)                |           |
| S2  | 0.66997 (5)   | 0.81091 (5)  | 0.92999 (5)  | 0.02737 (13)                |           |
| N1  | 0.28051 (15)  | 0.86048 (15) | 1.05097 (14) | 0.0193 (3)                  |           |
| N2  | 0.39950 (16)  | 0.87988 (15) | 1.02654 (14) | 0.0207 (3)                  |           |
| C1  | -0.09012 (18) | 1.03671 (16) | 1.23193 (15) | 0.0172 (3)                  |           |
| C2  | -0.21642 (19) | 1.02936 (18) | 1.24981 (17) | 0.0219 (4)                  |           |
| H2  | -0.2996       | 1.0883       | 1.3089       | 0.026*                      |           |
| C3  | -0.2230 (2)   | 0.93807 (19) | 1.18325 (17) | 0.0230 (4)                  |           |
| Н3  | -0.3103       | 0.9358       | 1.1961       | 0.028*                      |           |
| C4  | -0.1020 (2)   | 0.84996 (18) | 1.09786 (16) | 0.0214 (4)                  |           |
| H4  | -0.1060       | 0.7867       | 1.0526       | 0.026*                      |           |
| C5  | 0.02430 (19)  | 0.85474 (17) | 1.07898 (16) | 0.0199 (4)                  |           |
| Н5  | 0.1070        | 0.7942       | 1.0206       | 0.024*                      |           |
| C6  | 0.03213 (18)  | 0.94745 (16) | 1.14455 (15) | 0.0165 (3)                  |           |
| C7  | 0.16737 (18)  | 0.95264 (17) | 1.11708 (16) | 0.0187 (4)                  |           |
| H7  | 0.1710        | 1.0248       | 1.1485       | 0.022*                      |           |
| C8  | 0.52454 (19)  | 0.78826 (17) | 0.96203 (16) | 0.0199 (4)                  |           |
| C1A | -0.13142 (18) | 1.30012 (17) | 1.24425 (15) | 0.0187 (4)                  |           |
| C2A | -0.0523 (2)   | 1.37020 (19) | 1.22768 (17) | 0.0242 (4)                  |           |
| H2A | 0.0230        | 1.3421       | 1.2581       | 0.029*                      |           |
| C3A | -0.0827 (2)   | 1.4809 (2)   | 1.16693 (19) | 0.0289 (4)                  |           |
| H3A | -0.0281       | 1.5279       | 1.1561       | 0.035*                      |           |
| C4A | -0.1920 (2)   | 1.52279 (19) | 1.12225 (18) | 0.0271 (4)                  |           |
| H4A | -0.2129       | 1.5985       | 1.0810       | 0.033*                      |           |
| C5A | -0.2713 (2)   | 1.45323 (19) | 1.13810 (17) | 0.0249 (4)                  |           |
| H5A | -0.3465       | 1.4817       | 1.1075       | 0.030*                      |           |
| C6A | -0.24120 (19) | 1.34284 (18) | 1.19809 (16) | 0.0218 (4)                  |           |
| H6A | -0.2956       | 1.2957       | 1.2080       | 0.026*                      |           |
| C1B | -0.23181 (19) | 1.18714 (18) | 1.46050 (16) | 0.0208 (4)                  |           |
| C2B | -0.3553 (2)   | 1.30064 (19) | 1.49289 (18) | 0.0265 (4)                  |           |
| H2B | -0.3669       | 1.3667       | 1.4396       | 0.032*                      |           |
| C3B | -0.4615 (2)   | 1.3177 (2)   | 1.60282 (19) | 0.0316 (5)                  |           |

| H3B  | -0.5449     | 1.3957       | 1.6243       | 0.038*     |           |
|------|-------------|--------------|--------------|------------|-----------|
| C4B  | -0.4468 (2) | 1.2223 (2)   | 1.68103 (18) | 0.0303 (4) |           |
| H4B  | -0.5199     | 1.2341       | 1.7557       | 0.036*     |           |
| C5B  | -0.3244 (2) | 1.1093 (2)   | 1.64970 (18) | 0.0288 (4) |           |
| H5B  | -0.3137     | 1.0430       | 1.7028       | 0.035*     |           |
| C6B  | -0.2177 (2) | 1.09262 (19) | 1.54106 (17) | 0.0244 (4) |           |
| H6B  | -0.1335     | 1.0154       | 1.5212       | 0.029*     |           |
| С9   | 0.6997 (2)  | 0.5511 (2)   | 0.82747 (19) | 0.0296 (4) |           |
| H9A  | 0.7349      | 0.6020       | 0.7657       | 0.035*     |           |
| H9B  | 0.7592      | 0.5220       | 0.8789       | 0.035*     |           |
| C10  | 0.7045 (2)  | 0.4366 (2)   | 0.7671 (2)   | 0.0341 (5) |           |
| H10A | 0.6483      | 0.4675       | 0.7130       | 0.041*     |           |
| H10B | 0.6607      | 0.3918       | 0.8299       | 0.041*     |           |
| C11  | 0.8511 (3)  | 0.3413 (3)   | 0.6941 (3)   | 0.0277 (5) | 0.732 (3) |
| H11A | 0.8469      | 0.2631       | 0.6684       | 0.033*     | 0.732 (3) |
| H11B | 0.9089      | 0.3156       | 0.7470       | 0.033*     | 0.732 (3) |
| C12  | 0.9238 (3)  | 0.3919 (3)   | 0.5817 (2)   | 0.0290 (4) | 0.732 (3) |
| H12A | 0.8692      | 0.4133       | 0.5263       | 0.035*     | 0.732 (3) |
| H12B | 0.9250      | 0.4721       | 0.6063       | 0.035*     | 0.732 (3) |
| C13  | 1.0739 (3)  | 0.2945 (3)   | 0.5141 (3)   | 0.0291 (4) | 0.732 (3) |
| H13A | 1.0747      | 0.2090       | 0.5059       | 0.035*     | 0.732 (3) |
| H13B | 1.1049      | 0.3203       | 0.4316       | 0.035*     | 0.732 (3) |
| C14  | 1.1788 (4)  | 0.2821 (3)   | 0.5752 (3)   | 0.0300 (4) | 0.732 (3) |
| H14A | 1.1396      | 0.2724       | 0.6621       | 0.036*     | 0.732 (3) |
| H14B | 1.1915      | 0.3627       | 0.5697       | 0.036*     | 0.732 (3) |
| C15  | 1.3220 (3)  | 0.1684 (3)   | 0.5202 (3)   | 0.0312 (4) | 0.732 (3) |
| H15A | 1.3815      | 0.1636       | 0.5680       | 0.037*     | 0.732 (3) |
| H15B | 1.3094      | 0.0877       | 0.5267       | 0.037*     | 0.732 (3) |
| C16  | 1.3971 (4)  | 0.1766 (4)   | 0.3891 (3)   | 0.0338 (5) | 0.732 (3) |
| H16A | 1.4981      | 0.1246       | 0.3693       | 0.051*     | 0.732 (3) |
| H16B | 1.3789      | 0.2666       | 0.3757       | 0.051*     | 0.732 (3) |
| H16C | 1.3633      | 0.1440       | 0.3372       | 0.051*     | 0.732 (3) |
| C11X | 0.8421 (8)  | 0.3668 (9)   | 0.6579 (8)   | 0.0285 (6) | 0.268 (3) |
| H11C | 0.8566      | 0.2765       | 0.6465       | 0.034*     | 0.268 (3) |
| H11D | 0.8273      | 0.4080       | 0.5845       | 0.034*     | 0.268 (3) |
| C12X | 0.9771 (7)  | 0.3637 (7)   | 0.6639 (6)   | 0.0290 (5) | 0.268 (3) |
| H12C | 0.9746      | 0.4507       | 0.6527       | 0.035*     | 0.268 (3) |
| H12D | 0.9824      | 0.3424       | 0.7453       | 0.035*     | 0.268 (3) |
| C13X | 1.1062 (8)  | 0.2679 (8)   | 0.5704 (7)   | 0.0292 (5) | 0.268 (3) |
| H13C | 1.0997      | 0.2891       | 0.4893       | 0.035*     | 0.268 (3) |
| H13D | 1.1081      | 0.1812       | 0.5822       | 0.035*     | 0.268 (3) |
| C14X | 1.2442 (9)  | 0.2622 (8)   | 0.5726 (7)   | 0.0304 (5) | 0.268 (3) |
| H14C | 1.2471      | 0.2498       | 0.6557       | 0.036*     | 0.268 (3) |
| H14D | 1.2477      | 0.3456       | 0.5516       | 0.036*     | 0.268 (3) |
| C15X | 1.3729 (10) | 0.1538 (9)   | 0.4851 (8)   | 0.0316 (5) | 0.268 (3) |
| H15C | 1.3658      | 0.0711       | 0.5020       | 0.038*     | 0.268 (3) |
| H15D | 1.4577      | 0.1471       | 0.4992       | 0.038*     | 0.268 (3) |
| C16X | 1.3887 (11) | 0.1750 (11)  | 0.3520 (8)   | 0.0325 (6) | 0.268 (3) |
| H16D | 1.4877      | 0.1310       | 0.3017       | 0.049*     | 0.268 (3) |

# supplementary materials

| H16E | 1.3540    | 0.2676      | 0.3426    | 0.049* | 0.268 (3) |
|------|-----------|-------------|-----------|--------|-----------|
| H16F | 1.3345    | 0.1401      | 0.3266    | 0.049* | 0.268 (3) |
| H2N  | 0.391 (3) | 0.9588 (18) | 1.044 (2) | 0.039* |           |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$      | $U^{13}$      | U <sup>23</sup> |
|------|-------------|-------------|-------------|---------------|---------------|-----------------|
| P1   | 0.0189 (2)  | 0.0175 (2)  | 0.0191 (2)  | -0.00565 (18) | -0.00590 (18) | -0.00221 (17)   |
| S1   | 0.0163 (2)  | 0.0228 (2)  | 0.0291 (3)  | -0.00693 (18) | -0.00338 (18) | -0.00559 (18)   |
| S2   | 0.0158 (2)  | 0.0252 (2)  | 0.0388 (3)  | -0.00881 (19) | -0.0055 (2)   | -0.0017 (2)     |
| N1   | 0.0158 (7)  | 0.0212 (7)  | 0.0198 (7)  | -0.0079 (6)   | -0.0047 (6)   | 0.0030 (6)      |
| N2   | 0.0159 (7)  | 0.0207 (8)  | 0.0233 (8)  | -0.0081 (6)   | -0.0032 (6)   | -0.0009 (6)     |
| C1   | 0.0182 (8)  | 0.0156 (8)  | 0.0168 (8)  | -0.0061 (7)   | -0.0061 (7)   | 0.0019 (6)      |
| C2   | 0.0170 (8)  | 0.0236 (9)  | 0.0210 (9)  | -0.0061 (7)   | -0.0044 (7)   | -0.0019 (7)     |
| C3   | 0.0205 (9)  | 0.0280 (10) | 0.0236 (9)  | -0.0127 (8)   | -0.0084 (7)   | 0.0029 (7)      |
| C4   | 0.0267 (9)  | 0.0211 (9)  | 0.0195 (9)  | -0.0114 (8)   | -0.0097 (7)   | 0.0014 (7)      |
| C5   | 0.0200 (9)  | 0.0187 (8)  | 0.0165 (8)  | -0.0053 (7)   | -0.0043 (7)   | 0.0001 (7)      |
| C6   | 0.0171 (8)  | 0.0152 (8)  | 0.0156 (8)  | -0.0058 (7)   | -0.0055 (7)   | 0.0035 (6)      |
| C7   | 0.0188 (8)  | 0.0183 (8)  | 0.0174 (8)  | -0.0070 (7)   | -0.0051 (7)   | 0.0009 (7)      |
| C8   | 0.0181 (8)  | 0.0218 (9)  | 0.0188 (9)  | -0.0079 (7)   | -0.0056 (7)   | 0.0017 (7)      |
| C1A  | 0.0177 (8)  | 0.0166 (8)  | 0.0160 (8)  | -0.0046 (7)   | -0.0018 (7)   | -0.0031 (6)     |
| C2A  | 0.0192 (9)  | 0.0255 (9)  | 0.0254 (9)  | -0.0089 (8)   | -0.0049 (7)   | -0.0014 (7)     |
| C3A  | 0.0280 (10) | 0.0274 (10) | 0.0306 (11) | -0.0161 (8)   | -0.0035 (8)   | 0.0022 (8)      |
| C4A  | 0.0275 (10) | 0.0222 (9)  | 0.0232 (10) | -0.0081 (8)   | -0.0019 (8)   | 0.0027 (7)      |
| C5A  | 0.0223 (9)  | 0.0249 (9)  | 0.0214 (9)  | -0.0051 (8)   | -0.0062 (7)   | -0.0011 (7)     |
| C6A  | 0.0210 (9)  | 0.0208 (9)  | 0.0213 (9)  | -0.0080 (7)   | -0.0047 (7)   | -0.0025 (7)     |
| C1B  | 0.0233 (9)  | 0.0217 (9)  | 0.0180 (8)  | -0.0093 (7)   | -0.0075 (7)   | -0.0026 (7)     |
| C2B  | 0.0295 (10) | 0.0206 (9)  | 0.0223 (9)  | -0.0068 (8)   | -0.0050 (8)   | 0.0003 (7)      |
| C3B  | 0.0292 (11) | 0.0275 (10) | 0.0268 (10) | -0.0067 (9)   | -0.0017 (8)   | -0.0050 (8)     |
| C4B  | 0.0330 (11) | 0.0373 (11) | 0.0194 (9)  | -0.0182 (9)   | -0.0023 (8)   | -0.0029 (8)     |
| C5B  | 0.0404 (12) | 0.0321 (11) | 0.0205 (9)  | -0.0194 (9)   | -0.0136 (9)   | 0.0050 (8)      |
| C6B  | 0.0278 (10) | 0.0227 (9)  | 0.0239 (9)  | -0.0092 (8)   | -0.0119 (8)   | 0.0003 (7)      |
| C9   | 0.0179 (9)  | 0.0297 (10) | 0.0315 (11) | -0.0047 (8)   | -0.0017 (8)   | -0.0103 (8)     |
| C10  | 0.0303 (11) | 0.0306 (11) | 0.0379 (12) | -0.0156 (9)   | -0.0027 (9)   | -0.0054 (9)     |
| C11  | 0.0291 (8)  | 0.0263 (8)  | 0.0242 (9)  | -0.0103 (7)   | -0.0065 (7)   | 0.0001 (7)      |
| C12  | 0.0290 (8)  | 0.0285 (7)  | 0.0249 (8)  | -0.0094 (6)   | -0.0069 (6)   | -0.0004 (6)     |
| C13  | 0.0285 (8)  | 0.0301 (7)  | 0.0248 (8)  | -0.0096 (7)   | -0.0077 (7)   | -0.0009 (6)     |
| C14  | 0.0287 (8)  | 0.0320 (7)  | 0.0256 (7)  | -0.0103 (7)   | -0.0079 (7)   | -0.0006 (6)     |
| C15  | 0.0282 (8)  | 0.0351 (7)  | 0.0265 (9)  | -0.0106 (7)   | -0.0082 (7)   | 0.0002 (7)      |
| C16  | 0.0282 (9)  | 0.0390 (8)  | 0.0280 (10) | -0.0099 (7)   | -0.0074 (8)   | 0.0006 (8)      |
| C11X | 0.0290 (9)  | 0.0283 (9)  | 0.0249 (10) | -0.0101 (8)   | -0.0073 (8)   | -0.0015 (8)     |
| C12X | 0.0288 (8)  | 0.0294 (7)  | 0.0250 (8)  | -0.0100 (7)   | -0.0073 (7)   | -0.0008 (7)     |
| C13X | 0.0284 (8)  | 0.0305 (7)  | 0.0251 (8)  | -0.0100 (7)   | -0.0077 (7)   | -0.0006 (7)     |
| C14X | 0.0283 (9)  | 0.0332 (8)  | 0.0260 (9)  | -0.0104 (8)   | -0.0078 (8)   | -0.0001 (7)     |
| C15X | 0.0284 (9)  | 0.0352 (8)  | 0.0265 (9)  | -0.0103 (7)   | -0.0077 (8)   | 0.0000 (7)      |
| C16X | 0.0285 (9)  | 0.0370 (9)  | 0.0268 (10) | -0.0104 (8)   | -0.0076 (9)   | 0.0000 (9)      |

Geometric parameters (Å, °)

| P1—C1B     | 1.8322 (19) | C9—C10       | 1.505 (3)  |
|------------|-------------|--------------|------------|
| P1—C1A     | 1.8325 (18) | С9—Н9А       | 0.9900     |
| P1         | 1.8481 (18) | С9—Н9В       | 0.9900     |
| S1—C8      | 1.7391 (19) | C10—C11      | 1.513 (4)  |
| S1—C9      | 1.8120 (19) | C10—C11X     | 1.559 (8)  |
| S2—C8      | 1.6744 (18) | C10—H10A     | 0.9900     |
| N1—C7      | 1.281 (2)   | C10—H10B     | 0.9900     |
| N1—N2      | 1.378 (2)   | C11—C12      | 1.531 (4)  |
| N2—C8      | 1.337 (2)   | C11—H11A     | 0.9900     |
| N2—H2N     | 0.898 (17)  | C11—H11B     | 0.9900     |
| C1—C2      | 1.398 (3)   | C12—C13      | 1.529 (4)  |
| C1—C6      | 1.409 (2)   | C12—H12A     | 0.9900     |
| С2—С3      | 1.386 (3)   | C12—H12B     | 0.9900     |
| С2—Н2      | 0.9500      | C13—C14      | 1.526 (4)  |
| C3—C4      | 1.388 (3)   | C13—H13A     | 0.9900     |
| С3—Н3      | 0.9500      | C13—H13B     | 0.9900     |
| C4—C5      | 1.382 (3)   | C14—C15      | 1.529 (4)  |
| С4—Н4      | 0.9500      | C14—H14A     | 0.9900     |
| С5—С6      | 1.400 (2)   | C14—H14B     | 0.9900     |
| С5—Н5      | 0.9500      | C15—C16      | 1.511 (4)  |
| С6—С7      | 1.467 (2)   | C15—H15A     | 0.9900     |
| С7—Н7      | 0.9500      | C15—H15B     | 0.9900     |
| C1A—C2A    | 1.394 (3)   | C16—H16A     | 0.9800     |
| C1A—C6A    | 1.398 (3)   | C16—H16B     | 0.9800     |
| C2A—C3A    | 1.391 (3)   | C16—H16C     | 0.9800     |
| C2A—H2A    | 0.9500      | C11X—C12X    | 1.524 (9)  |
| C3A—C4A    | 1.382 (3)   | C11X—H11C    | 0.9900     |
| СЗА—НЗА    | 0.9500      | C11X—H11D    | 0.9900     |
| C4A—C5A    | 1.391 (3)   | C12X—C13X    | 1.501 (8)  |
| C4A—H4A    | 0.9500      | C12X—H12C    | 0.9900     |
| C5A—C6A    | 1.384 (3)   | C12X—H12D    | 0.9900     |
| С5А—Н5А    | 0.9500      | C13X—C14X    | 1.528 (9)  |
| С6А—Н6А    | 0.9500      | C13X—H13C    | 0.9900     |
| C1B—C6B    | 1.392 (3)   | C13X—H13D    | 0.9900     |
| C1B—C2B    | 1.394 (3)   | C14X—C15X    | 1.529 (9)  |
| C2B—C3B    | 1.392 (3)   | C14X—H14C    | 0.9900     |
| C2B—H2B    | 0.9500      | C14X—H14D    | 0.9900     |
| C3B—C4B    | 1.381 (3)   | C15X—C16X    | 1.534 (10) |
| СЗВ—НЗВ    | 0.9500      | C15X—H15C    | 0.9900     |
| C4B—C5B    | 1.385 (3)   | C15X—H15D    | 0.9900     |
| C4B—H4B    | 0.9500      | C16X—H16D    | 0.9800     |
| C5B—C6B    | 1.385 (3)   | C16X—H16E    | 0.9800     |
| C5B—H5B    | 0.9500      | C16X—H16F    | 0.9800     |
| C6B—H6B    | 0.9500      |              |            |
|            |             |              |            |
| C1B—P1—C1A | 104.27 (8)  | C11—C10—H10A | 108.8      |
| C1B—P1—C1  | 101.59 (8)  | C9—C10—H10B  | 108.8      |
| C1A—P1—C1  | 102.39 (8)  | C11—C10—H10B | 108.8      |
|            |             |              |            |

| C8—S1—C9    | 102.85 (9)  | H10A—C10—H10B  | 107.7     |
|-------------|-------------|----------------|-----------|
| C7—N1—N2    | 114.84 (15) | C10-C11-C12    | 114.6 (2) |
| C8—N2—N1    | 120.21 (15) | C10-C11-H11A   | 108.6     |
| C8—N2—H2N   | 120.0 (17)  | C12—C11—H11A   | 108.6     |
| N1—N2—H2N   | 119.0 (17)  | C10-C11-H11B   | 108.6     |
| C2—C1—C6    | 118.18 (16) | C12—C11—H11B   | 108.6     |
| C2—C1—P1    | 121.83 (13) | H11A—C11—H11B  | 107.6     |
| C6—C1—P1    | 119.94 (13) | C13—C12—C11    | 112.7 (2) |
| C3—C2—C1    | 121.53 (17) | C13—C12—H12A   | 109.1     |
| С3—С2—Н2    | 119.2       | C11—C12—H12A   | 109.1     |
| С1—С2—Н2    | 119.2       | C13—C12—H12B   | 109.1     |
| C2—C3—C4    | 119.95 (17) | C11—C12—H12B   | 109.1     |
| С2—С3—Н3    | 120.0       | H12A—C12—H12B  | 107.8     |
| С4—С3—Н3    | 120.0       | C14—C13—C12    | 114.3 (2) |
| C5—C4—C3    | 119.64 (17) | C14—C13—H13A   | 108.7     |
| C5—C4—H4    | 120.2       | C12—C13—H13A   | 108.7     |
| C3—C4—H4    | 120.2       | C14—C13—H13B   | 108.7     |
| C4—C5—C6    | 120.99 (16) | C12—C13—H13B   | 108.7     |
| С4—С5—Н5    | 119.5       | H13A—C13—H13B  | 107.6     |
| С6—С5—Н5    | 119.5       | C13—C14—C15    | 113.8 (2) |
| C5—C6—C1    | 119.71 (16) | C13—C14—H14A   | 108.8     |
| C5—C6—C7    | 118.94 (15) | C15—C14—H14A   | 108.8     |
| C1—C6—C7    | 121.30 (16) | C13—C14—H14B   | 108.8     |
| N1—C7—C6    | 120.42 (16) | C15—C14—H14B   | 108.8     |
| N1—C7—H7    | 119.8       | H14A—C14—H14B  | 107.7     |
| С6—С7—Н7    | 119.8       | C16—C15—C14    | 113.9 (3) |
| N2—C8—S2    | 120.86 (14) | C16—C15—H15A   | 108.8     |
| N2—C8—S1    | 114.09 (13) | C14—C15—H15A   | 108.8     |
| S2—C8—S1    | 125.05 (11) | C16—C15—H15B   | 108.8     |
| C2A—C1A—C6A | 118.71 (17) | C14—C15—H15B   | 108.8     |
| C2A—C1A—P1  | 116.43 (14) | H15A—C15—H15B  | 107.7     |
| C6A—C1A—P1  | 124.85 (14) | C15—C16—H16A   | 109.5     |
| C3A—C2A—C1A | 120.56 (18) | C15—C16—H16B   | 109.5     |
| C3A—C2A—H2A | 119.7       | H16A—C16—H16B  | 109.5     |
| C1A—C2A—H2A | 119.7       | C15—C16—H16C   | 109.5     |
| C4A—C3A—C2A | 120.29 (19) | H16A—C16—H16C  | 109.5     |
| С4А—С3А—НЗА | 119.9       | H16B—C16—H16C  | 109.5     |
| С2А—С3А—НЗА | 119.9       | C12X—C11X—C10  | 118.2 (6) |
| C3A—C4A—C5A | 119.53 (18) | C12X—C11X—H11C | 107.8     |
| C3A—C4A—H4A | 120.2       | C10—C11X—H11C  | 107.8     |
| C5A—C4A—H4A | 120.2       | C12X—C11X—H11D | 107.8     |
| C6A—C5A—C4A | 120.40 (18) | C10-C11X-H11D  | 107.8     |
| С6А—С5А—Н5А | 119.8       | H11C—C11X—H11D | 107.1     |
| C4A—C5A—H5A | 119.8       | C13X—C12X—C11X | 113.2 (7) |
| C5A—C6A—C1A | 120.51 (18) | C13X—C12X—H12C | 108.9     |
| С5А—С6А—Н6А | 119.7       | C11X—C12X—H12C | 108.9     |
| С1А—С6А—Н6А | 119.7       | C13X—C12X—H12D | 108.9     |
| C6B—C1B—C2B | 118.33 (18) | C11X—C12X—H12D | 108.9     |
| C6B—C1B—P1  | 116.22 (14) | H12C—C12X—H12D | 107.7     |

| C2B—C1B—P1                                                                                                                              | 125.33 (15)                                                                                                                                                                                                                                                                            | C12X—C13X—C14X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 115.0 (7)                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C3B—C2B—C1B                                                                                                                             | 120.41 (19)                                                                                                                                                                                                                                                                            | C12X—C13X—H13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108.5                                                                                                                                                                                                                                                                                                                                        |
| C3B—C2B—H2B                                                                                                                             | 119.8                                                                                                                                                                                                                                                                                  | C14X—C13X—H13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108.5                                                                                                                                                                                                                                                                                                                                        |
| C1B—C2B—H2B                                                                                                                             | 119.8                                                                                                                                                                                                                                                                                  | C12X—C13X—H13D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108.5                                                                                                                                                                                                                                                                                                                                        |
| C4B—C3B—C2B                                                                                                                             | 120.60 (19)                                                                                                                                                                                                                                                                            | C14X—C13X—H13D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108.5                                                                                                                                                                                                                                                                                                                                        |
| C4B—C3B—H3B                                                                                                                             | 119.7                                                                                                                                                                                                                                                                                  | H13C—C13X—H13D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 107.5                                                                                                                                                                                                                                                                                                                                        |
| C2B—C3B—H3B                                                                                                                             | 119.7                                                                                                                                                                                                                                                                                  | C13X—C14X—C15X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 113.0 (7)                                                                                                                                                                                                                                                                                                                                    |
| C3B—C4B—C5B                                                                                                                             | 119.42 (19)                                                                                                                                                                                                                                                                            | C13X—C14X—H14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.0                                                                                                                                                                                                                                                                                                                                        |
| C3B—C4B—H4B                                                                                                                             | 120.3                                                                                                                                                                                                                                                                                  | C15X—C14X—H14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.0                                                                                                                                                                                                                                                                                                                                        |
| C5B—C4B—H4B                                                                                                                             | 120.3                                                                                                                                                                                                                                                                                  | C13X—C14X—H14D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.0                                                                                                                                                                                                                                                                                                                                        |
| C4B—C5B—C6B                                                                                                                             | 120.14 (19)                                                                                                                                                                                                                                                                            | C15X—C14X—H14D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.0                                                                                                                                                                                                                                                                                                                                        |
| C4B—C5B—H5B                                                                                                                             | 119.9                                                                                                                                                                                                                                                                                  | H14C—C14X—H14D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 107.8                                                                                                                                                                                                                                                                                                                                        |
| C6B—C5B—H5B                                                                                                                             | 119.9                                                                                                                                                                                                                                                                                  | C14X—C15X—C16X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 112.8 (8)                                                                                                                                                                                                                                                                                                                                    |
| C5B—C6B—C1B                                                                                                                             | 121.09 (18)                                                                                                                                                                                                                                                                            | C14X—C15X—H15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.0                                                                                                                                                                                                                                                                                                                                        |
| С5В—С6В—Н6В                                                                                                                             | 119.5                                                                                                                                                                                                                                                                                  | C16X—C15X—H15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.0                                                                                                                                                                                                                                                                                                                                        |
| C1B—C6B—H6B                                                                                                                             | 119.5                                                                                                                                                                                                                                                                                  | C14X—C15X—H15D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.0                                                                                                                                                                                                                                                                                                                                        |
| C10—C9—S1                                                                                                                               | 107.87 (14)                                                                                                                                                                                                                                                                            | C16X—C15X—H15D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.0                                                                                                                                                                                                                                                                                                                                        |
| С10—С9—Н9А                                                                                                                              | 110.1                                                                                                                                                                                                                                                                                  | H15C—C15X—H15D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 107.8                                                                                                                                                                                                                                                                                                                                        |
| S1—C9—H9A                                                                                                                               | 110.1                                                                                                                                                                                                                                                                                  | C15X—C16X—H16D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5                                                                                                                                                                                                                                                                                                                                        |
| С10—С9—Н9В                                                                                                                              | 110.1                                                                                                                                                                                                                                                                                  | C15X—C16X—H16E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5                                                                                                                                                                                                                                                                                                                                        |
| S1—C9—H9B                                                                                                                               | 110.1                                                                                                                                                                                                                                                                                  | H16D—C16X—H16E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5                                                                                                                                                                                                                                                                                                                                        |
| H9A—C9—H9B                                                                                                                              | 108.4                                                                                                                                                                                                                                                                                  | C15X—C16X—H16F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5                                                                                                                                                                                                                                                                                                                                        |
| C9—C10—C11                                                                                                                              | 113.6 (2)                                                                                                                                                                                                                                                                              | H16D—C16X—H16F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5                                                                                                                                                                                                                                                                                                                                        |
| C9—C10—C11X                                                                                                                             | 113.2 (4)                                                                                                                                                                                                                                                                              | H16E—C16X—H16F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5                                                                                                                                                                                                                                                                                                                                        |
| C9—C10—H10A                                                                                                                             | 108.8                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                         |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                         |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                              |
| C7—N1—N2—C8                                                                                                                             | 177.59 (16)                                                                                                                                                                                                                                                                            | C3A—C4A—C5A—C6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0 (3)                                                                                                                                                                                                                                                                                                                                      |
| C7—N1—N2—C8<br>C1B—P1—C1—C2                                                                                                             | 177.59 (16)<br>23.69 (17)                                                                                                                                                                                                                                                              | C3A—C4A—C5A—C6A<br>C4A—C5A—C6A—C1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0 (3)<br>0.4 (3)                                                                                                                                                                                                                                                                                                                           |
| C7—N1—N2—C8<br>C1B—P1—C1—C2<br>C1A—P1—C1—C2                                                                                             | 177.59 (16)<br>23.69 (17)<br>-83.93 (16)                                                                                                                                                                                                                                               | C3A—C4A—C5A—C6A<br>C4A—C5A—C6A—C1A<br>C2A—C1A—C6A—C5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0 (3)<br>0.4 (3)<br>-0.6 (3)                                                                                                                                                                                                                                                                                                               |
| C7—N1—N2—C8<br>C1B—P1—C1—C2<br>C1A—P1—C1—C2<br>C1B—P1—C1—C2                                                                             | 177.59 (16)<br>23.69 (17)<br>-83.93 (16)<br>-153.73 (14)                                                                                                                                                                                                                               | C3A—C4A—C5A—C6A<br>C4A—C5A—C6A—C1A<br>C2A—C1A—C6A—C5A<br>P1—C1A—C6A—C5A                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0 (3)<br>0.4 (3)<br>-0.6 (3)<br>-179.15 (14)                                                                                                                                                                                                                                                                                               |
| C7—N1—N2—C8<br>C1B—P1—C1—C2<br>C1A—P1—C1—C2<br>C1B—P1—C1—C6<br>C1A—P1—C1—C6                                                             | 177.59 (16)<br>23.69 (17)<br>-83.93 (16)<br>-153.73 (14)<br>98.65 (14)                                                                                                                                                                                                                 | C3A—C4A—C5A—C6A<br>C4A—C5A—C6A—C1A<br>C2A—C1A—C6A—C5A<br>P1—C1A—C6A—C5A<br>C1A—P1—C1B—C6B                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0 (3)<br>0.4 (3)<br>-0.6 (3)<br>-179.15 (14)<br>-177.27 (14)                                                                                                                                                                                                                                                                               |
| C7—N1—N2—C8<br>C1B—P1—C1—C2<br>C1A—P1—C1—C2<br>C1B—P1—C1—C6<br>C1A—P1—C1—C6<br>C6—C1—C2—C3                                              | 177.59 (16)<br>23.69 (17)<br>-83.93 (16)<br>-153.73 (14)<br>98.65 (14)<br>-0.6 (3)                                                                                                                                                                                                     | C3A—C4A—C5A—C6A<br>C4A—C5A—C6A—C1A<br>C2A—C1A—C6A—C5A<br>P1—C1A—C6A—C5A<br>C1A—P1—C1B—C6B<br>C1—P1—C1B—C6B                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0 (3)<br>0.4 (3)<br>-0.6 (3)<br>-179.15 (14)<br>-177.27 (14)<br>76.58 (15)                                                                                                                                                                                                                                                                 |
| C7—N1—N2—C8<br>C1B—P1—C1—C2<br>C1A—P1—C1—C2<br>C1B—P1—C1—C6<br>C1A—P1—C1—C6<br>C6—C1—C2—C3<br>P1—C1—C2—C3                               | 177.59 (16)<br>23.69 (17)<br>-83.93 (16)<br>-153.73 (14)<br>98.65 (14)<br>-0.6 (3)<br>-178.08 (14)                                                                                                                                                                                     | C3A—C4A—C5A—C6A<br>C4A—C5A—C6A—C1A<br>C2A—C1A—C6A—C5A<br>P1—C1A—C6A—C5A<br>C1A—P1—C1B—C6B<br>C1—P1—C1B—C6B<br>C1A—P1—C1B—C2B                                                                                                                                                                                                                                                                                                                                                                                            | 0.0 (3)<br>0.4 (3)<br>-0.6 (3)<br>-179.15 (14)<br>-177.27 (14)<br>76.58 (15)<br>-1.38 (19)                                                                                                                                                                                                                                                   |
| C7—N1—N2—C8<br>C1B—P1—C1—C2<br>C1A—P1—C1—C2<br>C1B—P1—C1—C6<br>C1A—P1—C1—C6<br>C6—C1—C2—C3<br>P1—C1—C2—C3<br>C1—C2—C3—C4                | 177.59 (16)<br>23.69 (17)<br>-83.93 (16)<br>-153.73 (14)<br>98.65 (14)<br>-0.6 (3)<br>-178.08 (14)<br>1.0 (3)                                                                                                                                                                          | C3A—C4A—C5A—C6A<br>C4A—C5A—C6A—C1A<br>C2A—C1A—C6A—C5A<br>P1—C1A—C6A—C5A<br>C1A—P1—C1B—C6B<br>C1—P1—C1B—C6B<br>C1A—P1—C1B—C2B<br>C1—P1—C1B—C2B                                                                                                                                                                                                                                                                                                                                                                           | 0.0 (3)<br>0.4 (3)<br>-0.6 (3)<br>-179.15 (14)<br>-177.27 (14)<br>76.58 (15)<br>-1.38 (19)<br>-107.53 (17)                                                                                                                                                                                                                                   |
| C7—N1—N2—C8<br>C1B—P1—C1—C2<br>C1A—P1—C1—C2<br>C1B—P1—C1—C6<br>C1A—P1—C1—C6<br>C6—C1—C2—C3<br>P1—C1—C2—C3<br>C1—C2—C3—C4<br>C2—C3—C4—C5 | 177.59 (16)<br>23.69 (17)<br>-83.93 (16)<br>-153.73 (14)<br>98.65 (14)<br>-0.6 (3)<br>-178.08 (14)<br>1.0 (3)<br>-0.6 (3)                                                                                                                                                              | C3A—C4A—C5A—C6A<br>C4A—C5A—C6A—C1A<br>C2A—C1A—C6A—C5A<br>P1—C1A—C6A—C5A<br>C1A—P1—C1B—C6B<br>C1—P1—C1B—C6B<br>C1A—P1—C1B—C2B<br>C1—P1—C1B—C2B<br>C6B—C1B—C2B—C3B                                                                                                                                                                                                                                                                                                                                                        | 0.0 (3)<br>0.4 (3)<br>-0.6 (3)<br>-179.15 (14)<br>-177.27 (14)<br>76.58 (15)<br>-1.38 (19)<br>-107.53 (17)<br>-0.4 (3)                                                                                                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                    | 177.59 (16) $23.69 (17)$ $-83.93 (16)$ $-153.73 (14)$ $98.65 (14)$ $-0.6 (3)$ $-178.08 (14)$ $1.0 (3)$ $-0.6 (3)$ $-0.2 (3)$                                                                                                                                                           | C3A—C4A—C5A—C6A<br>C4A—C5A—C6A—C1A<br>C2A—C1A—C6A—C5A<br>P1—C1A—C6A—C5A<br>C1A—P1—C1B—C6B<br>C1—P1—C1B—C6B<br>C1A—P1—C1B—C2B<br>C1—P1—C1B—C2B<br>C6B—C1B—C2B—C3B<br>P1—C1B—C2B—C3B                                                                                                                                                                                                                                                                                                                                      | 0.0 (3)<br>0.4 (3)<br>-0.6 (3)<br>-179.15 (14)<br>-177.27 (14)<br>76.58 (15)<br>-1.38 (19)<br>-107.53 (17)<br>-0.4 (3)<br>-176.25 (16)                                                                                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                    | 177.59 (16) $23.69 (17)$ $-83.93 (16)$ $-153.73 (14)$ $98.65 (14)$ $-0.6 (3)$ $-178.08 (14)$ $1.0 (3)$ $-0.6 (3)$ $-0.2 (3)$ $0.6 (3)$                                                                                                                                                 | C3A—C4A—C5A—C6A<br>C4A—C5A—C6A—C1A<br>C2A—C1A—C6A—C5A<br>P1—C1A—C6A—C5A<br>C1A—P1—C1B—C6B<br>C1—P1—C1B—C6B<br>C1—P1—C1B—C2B<br>C6B—C1B—C2B—C3B<br>P1—C1B—C2B—C3B<br>C1B—C2B—C3B—C4B                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.0 (3) \\ 0.4 (3) \\ -0.6 (3) \\ -179.15 (14) \\ -177.27 (14) \\ 76.58 (15) \\ -1.38 (19) \\ -107.53 (17) \\ -0.4 (3) \\ -176.25 (16) \\ -0.5 (3) \end{array}$                                                                                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                    | 177.59 (16) $23.69 (17)$ $-83.93 (16)$ $-153.73 (14)$ $98.65 (14)$ $-0.6 (3)$ $-178.08 (14)$ $1.0 (3)$ $-0.6 (3)$ $-0.2 (3)$ $0.6 (3)$ $-177.04 (16)$                                                                                                                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0.0 (3) \\ 0.4 (3) \\ -0.6 (3) \\ -179.15 (14) \\ -177.27 (14) \\ 76.58 (15) \\ -1.38 (19) \\ -107.53 (17) \\ -0.4 (3) \\ -176.25 (16) \\ -0.5 (3) \\ 0.5 (3) \end{array}$                                                                                                                                                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                    | 177.59 (16) $23.69 (17)$ $-83.93 (16)$ $-153.73 (14)$ $98.65 (14)$ $-0.6 (3)$ $-178.08 (14)$ $1.0 (3)$ $-0.6 (3)$ $-0.2 (3)$ $0.6 (3)$ $-177.04 (16)$ $-0.2 (2)$                                                                                                                       | C3A—C4A—C5A—C6A<br>C4A—C5A—C6A—C1A<br>C2A—C1A—C6A—C5A<br>P1—C1A—C6A—C5A<br>C1A—P1—C1B—C6B<br>C1—P1—C1B—C6B<br>C1—P1—C1B—C2B<br>C6B—C1B—C2B—C3B<br>P1—C1B—C2B—C3B<br>C1B—C2B—C3B—C4B<br>C2B—C3B—C4B—C5B<br>C3B—C4B—C5B—C6B                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0.0 (3) \\ 0.4 (3) \\ -0.6 (3) \\ -179.15 (14) \\ -177.27 (14) \\ 76.58 (15) \\ -1.38 (19) \\ -107.53 (17) \\ -0.4 (3) \\ -176.25 (16) \\ -0.5 (3) \\ 0.5 (3) \\ 0.3 (3) \end{array}$                                                                                                                                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                    | 177.59 (16) $23.69 (17)$ $-83.93 (16)$ $-153.73 (14)$ $98.65 (14)$ $-0.6 (3)$ $-178.08 (14)$ $1.0 (3)$ $-0.6 (3)$ $-0.2 (3)$ $0.6 (3)$ $-177.04 (16)$ $-0.2 (2)$ $177.34 (13)$                                                                                                         | C3A—C4A—C5A—C6A<br>C4A—C5A—C6A—C1A<br>C2A—C1A—C6A—C5A<br>P1—C1A—C6A—C5A<br>C1A—P1—C1B—C6B<br>C1—P1—C1B—C6B<br>C1A—P1—C1B—C2B<br>C6B—C1B—C2B—C3B<br>P1—C1B—C2B—C3B<br>C1B—C2B—C3B—C4B<br>C2B—C3B—C4B—C5B<br>C3B—C4B—C5B—C6B<br>C4B—C5B—C6B—C1B                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.0 (3) \\ 0.4 (3) \\ -0.6 (3) \\ -179.15 (14) \\ -177.27 (14) \\ 76.58 (15) \\ -1.38 (19) \\ -107.53 (17) \\ -0.4 (3) \\ -176.25 (16) \\ -0.5 (3) \\ 0.5 (3) \\ 0.3 (3) \\ -1.3 (3) \end{array}$                                                                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                    | 177.59 (16) $23.69 (17)$ $-83.93 (16)$ $-153.73 (14)$ $98.65 (14)$ $-0.6 (3)$ $-178.08 (14)$ $1.0 (3)$ $-0.6 (3)$ $-0.2 (3)$ $0.6 (3)$ $-177.04 (16)$ $-0.2 (2)$ $177.34 (13)$ $177.37 (16)$                                                                                           | C3A—C4A—C5A—C6A<br>C4A—C5A—C6A—C1A<br>C2A—C1A—C6A—C5A<br>P1—C1A—C6A—C5A<br>C1A—P1—C1B—C6B<br>C1—P1—C1B—C6B<br>C1—P1—C1B—C2B<br>C6B—C1B—C2B—C3B<br>P1—C1B—C2B—C3B<br>C1B—C2B—C3B—C4B<br>C2B—C3B—C4B—C5B<br>C3B—C4B—C5B—C6B<br>C4B—C5B—C6B—C1B<br>C2B—C1B—C6B—C5B                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.0 (3) \\ 0.4 (3) \\ -0.6 (3) \\ -179.15 (14) \\ -177.27 (14) \\ 76.58 (15) \\ -1.38 (19) \\ -107.53 (17) \\ -0.4 (3) \\ -176.25 (16) \\ -0.5 (3) \\ 0.5 (3) \\ 0.3 (3) \\ -1.3 (3) \\ 1.3 (3) \end{array}$                                                                                                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                    | 177.59 (16) $23.69 (17)$ $-83.93 (16)$ $-153.73 (14)$ $98.65 (14)$ $-0.6 (3)$ $-178.08 (14)$ $1.0 (3)$ $-0.6 (3)$ $-0.2 (3)$ $0.6 (3)$ $-177.04 (16)$ $-0.2 (2)$ $177.34 (13)$ $177.37 (16)$ $-5.1 (2)$                                                                                | C3A—C4A—C5A—C6A<br>C4A—C5A—C6A—C1A<br>C2A—C1A—C6A—C5A<br>P1—C1A—C6A—C5A<br>C1A—P1—C1B—C6B<br>C1—P1—C1B—C6B<br>C1—P1—C1B—C2B<br>C6B—C1B—C2B—C3B<br>P1—C1B—C2B—C3B<br>C1B—C2B—C3B—C4B<br>C2B—C3B—C4B—C5B<br>C3B—C4B—C5B—C6B<br>C4B—C5B—C6B—C1B<br>C2B—C1B—C6B—C5B<br>P1—C1B—C6B—C5B                                                                                                                                                                                                                                       | $\begin{array}{c} 0.0 (3) \\ 0.4 (3) \\ -0.6 (3) \\ -179.15 (14) \\ -177.27 (14) \\ 76.58 (15) \\ -1.38 (19) \\ -107.53 (17) \\ -0.4 (3) \\ -176.25 (16) \\ -0.5 (3) \\ 0.5 (3) \\ 0.3 (3) \\ -1.3 (3) \\ 1.3 (3) \\ 177.49 (15) \end{array}$                                                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                    | 177.59 (16) $23.69 (17)$ $-83.93 (16)$ $-153.73 (14)$ $98.65 (14)$ $-0.6 (3)$ $-178.08 (14)$ $1.0 (3)$ $-0.6 (3)$ $-0.2 (3)$ $0.6 (3)$ $-177.04 (16)$ $-0.2 (2)$ $177.34 (13)$ $177.37 (16)$ $-5.1 (2)$ $176.72 (15)$                                                                  | C3A—C4A—C5A—C6A<br>C4A—C5A—C6A—C1A<br>C2A—C1A—C6A—C5A<br>P1—C1A—C6A—C5A<br>C1A—P1—C1B—C6B<br>C1—P1—C1B—C6B<br>C1—P1—C1B—C2B<br>C6B—C1B—C2B—C3B<br>P1—C1B—C2B—C3B<br>C1B—C2B—C3B—C4B<br>C2B—C3B—C4B—C5B<br>C3B—C4B—C5B—C6B<br>C4B—C5B—C6B—C1B<br>C2B—C1B—C6B—C5B<br>P1—C1B—C6B—C5B<br>C3—C1B—C6B—C5B<br>C3—C1B—C6B—C5B<br>C3—C1B—C6B—C5B<br>C3—C1B—C6B—C5B<br>C3—C1B—C6B—C5B<br>C3—C1B—C6B—C5B<br>C3—C1B—C6B—C5B<br>C3—C1B—C6B—C5B<br>C3—C1B—C6B—C5B<br>C3—C1B—C6B—C5B<br>C3—C1B—C6B—C5B<br>C3—C1B—C6B—C5B<br>C3—C1D—C1D | $\begin{array}{c} 0.0 (3) \\ 0.4 (3) \\ -0.6 (3) \\ -179.15 (14) \\ -177.27 (14) \\ 76.58 (15) \\ -1.38 (19) \\ -107.53 (17) \\ -0.4 (3) \\ -176.25 (16) \\ -0.5 (3) \\ 0.5 (3) \\ 0.3 (3) \\ -1.3 (3) \\ 1.3 (3) \\ 177.49 (15) \\ -170.42 (15) \end{array}$                                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                    | 177.59 (16) $23.69 (17)$ $-83.93 (16)$ $-153.73 (14)$ $98.65 (14)$ $-0.6 (3)$ $-178.08 (14)$ $1.0 (3)$ $-0.6 (3)$ $-0.2 (3)$ $0.6 (3)$ $-177.04 (16)$ $-0.2 (2)$ $177.34 (13)$ $177.37 (16)$ $-5.1 (2)$ $176.72 (15)$ $-12.7 (3)$                                                      | C3A—C4A—C5A—C6A<br>C4A—C5A—C6A—C1A<br>C2A—C1A—C6A—C5A<br>P1—C1A—C6A—C5A<br>C1A—P1—C1B—C6B<br>C1—P1—C1B—C6B<br>C1—P1—C1B—C2B<br>C6B—C1B—C2B—C3B<br>P1—C1B—C2B—C3B<br>C1B—C2B—C3B—C4B<br>C2B—C3B—C4B—C5B<br>C3B—C4B—C5B—C6B<br>C4B—C5B—C6B—C1B<br>C2B—C1B—C6B—C5B<br>P1—C1B—C6B—C5B<br>P1—C1B—C6B—C5B<br>C3—C1B—C6B—C5B<br>C3—C1B—C6B—C5B<br>C3—C1B—C6B—C5B<br>C3—C1B—C6B—C5B<br>C3—C1B—C6B—C5B<br>C3—C1B—C6B—C5B<br>C3—C1B—C6B—C5B<br>C3—C1D—C10—C11                                                                     | $\begin{array}{c} 0.0 (3) \\ 0.4 (3) \\ -0.6 (3) \\ -179.15 (14) \\ -177.27 (14) \\ 76.58 (15) \\ -1.38 (19) \\ -107.53 (17) \\ -0.4 (3) \\ -176.25 (16) \\ -0.5 (3) \\ 0.5 (3) \\ 0.3 (3) \\ -1.3 (3) \\ 1.3 (3) \\ 177.49 (15) \\ -170.42 (15) \\ -175.95 (19) \end{array}$                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                    | 177.59 (16) $23.69 (17)$ $-83.93 (16)$ $-153.73 (14)$ $98.65 (14)$ $-0.6 (3)$ $-178.08 (14)$ $1.0 (3)$ $-0.6 (3)$ $-0.2 (3)$ $0.6 (3)$ $-177.04 (16)$ $-0.2 (2)$ $177.34 (13)$ $177.37 (16)$ $-5.1 (2)$ $176.72 (15)$ $-12.7 (3)$ $169.78 (16)$                                        | C3A—C4A—C5A—C6A<br>C4A—C5A—C6A—C1A<br>C2A—C1A—C6A—C5A<br>P1—C1A—C6A—C5A<br>C1A—P1—C1B—C6B<br>C1—P1—C1B—C6B<br>C1—P1—C1B—C2B<br>C6B—C1B—C2B—C3B<br>P1—C1B—C2B—C3B<br>C1B—C2B—C3B—C4B<br>C2B—C3B—C4B—C5B<br>C3B—C4B—C5B—C6B<br>C4B—C5B—C6B—C1B<br>C2B—C1B—C6B—C5B<br>P1—C1B—C6B—C5B<br>P1—C1B—C6B—C5B<br>C8—S1—C9—C10<br>S1—C9—C10—C11<br>S1—C9—C10—C11X                                                                                                                                                                  | $\begin{array}{c} 0.0 (3) \\ 0.4 (3) \\ -0.6 (3) \\ -179.15 (14) \\ -177.27 (14) \\ 76.58 (15) \\ -1.38 (19) \\ -107.53 (17) \\ -0.4 (3) \\ -176.25 (16) \\ -0.5 (3) \\ 0.5 (3) \\ 0.3 (3) \\ -1.3 (3) \\ 1.3 (3) \\ 177.49 (15) \\ -170.42 (15) \\ -175.95 (19) \\ 163.0 (4) \end{array}$                                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                    | 177.59 (16) $23.69 (17)$ $-83.93 (16)$ $-153.73 (14)$ $98.65 (14)$ $-0.6 (3)$ $-178.08 (14)$ $1.0 (3)$ $-0.6 (3)$ $-0.2 (3)$ $0.6 (3)$ $-177.04 (16)$ $-0.2 (2)$ $177.34 (13)$ $177.37 (16)$ $-5.1 (2)$ $176.72 (15)$ $-12.7 (3)$ $169.78 (16)$ $179.22 (13)$                          | C3A—C4A—C5A—C6A<br>C4A—C5A—C6A—C1A<br>C2A—C1A—C6A—C5A<br>P1—C1A—C6A—C5A<br>C1A—P1—C1B—C6B<br>C1—P1—C1B—C6B<br>C1—P1—C1B—C2B<br>C6B—C1B—C2B—C3B<br>P1—C1B—C2B—C3B<br>C1B—C2B—C3B—C4B<br>C2B—C3B—C4B—C5B<br>C3B—C4B—C5B—C6B<br>C4B—C5B—C6B—C1B<br>C2B—C1B—C6B—C5B<br>C4B—C5B—C6B—C5B<br>C4B—C5B—C6B—C5B<br>C3=C1B—C6B—C5B<br>C3=C1B—C6B—C5B<br>C3=C1B—C6B—C5B<br>C3=C10—C11<br>S1—C9—C10—C11<br>S1—C9—C10—C11<br>C1=C12                                                                                                   | $\begin{array}{c} 0.0 (3) \\ 0.4 (3) \\ -0.6 (3) \\ -179.15 (14) \\ -177.27 (14) \\ 76.58 (15) \\ -1.38 (19) \\ -107.53 (17) \\ -0.4 (3) \\ -176.25 (16) \\ -0.5 (3) \\ 0.5 (3) \\ 0.5 (3) \\ 0.3 (3) \\ -1.3 (3) \\ 1.3 (3) \\ 177.49 (15) \\ -170.42 (15) \\ -175.95 (19) \\ 163.0 (4) \\ -67.3 (3) \end{array}$                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                    | 177.59 (16) $23.69 (17)$ $-83.93 (16)$ $-153.73 (14)$ $98.65 (14)$ $-0.6 (3)$ $-178.08 (14)$ $1.0 (3)$ $-0.6 (3)$ $-0.2 (3)$ $0.6 (3)$ $-177.04 (16)$ $-0.2 (2)$ $177.34 (13)$ $177.37 (16)$ $-5.1 (2)$ $176.72 (15)$ $-12.7 (3)$ $169.78 (16)$ $179.22 (13)$ $-1.6 (2)$               | C3A—C4A—C5A—C6A<br>C4A—C5A—C6A—C1A<br>C2A—C1A—C6A—C5A<br>P1—C1A—C6A—C5A<br>C1A—P1—C1B—C6B<br>C1—P1—C1B—C6B<br>C1—P1—C1B—C2B<br>C6B—C1B—C2B—C3B<br>P1—C1B—C2B—C3B<br>C1B—C2B—C3B—C4B<br>C2B—C3B—C4B—C5B<br>C3B—C4B—C5B—C6B<br>C4B—C5B—C6B—C1B<br>C2B—C1B—C6B—C5B<br>P1—C1B—C6B—C5B<br>P1—C1B—C6B—C5B<br>C3=S1—C9—C10<br>S1—C9—C10—C11<br>S1—C9—C10—C11<br>S1—C9—C10—C11<br>C12<br>C11X—C10—C11—C12                                                                                                                       | $\begin{array}{c} 0.0 (3) \\ 0.4 (3) \\ -0.6 (3) \\ -179.15 (14) \\ -177.27 (14) \\ 76.58 (15) \\ -1.38 (19) \\ -107.53 (17) \\ -0.4 (3) \\ -176.25 (16) \\ -0.5 (3) \\ 0.5 (3) \\ 0.5 (3) \\ 0.3 (3) \\ -1.3 (3) \\ 1.3 (3) \\ 177.49 (15) \\ -170.42 (15) \\ -175.95 (19) \\ 163.0 (4) \\ -67.3 (3) \\ 25.7 (11) \end{array}$              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                    | 177.59 (16) $23.69 (17)$ $-83.93 (16)$ $-153.73 (14)$ $98.65 (14)$ $-0.6 (3)$ $-178.08 (14)$ $1.0 (3)$ $-0.6 (3)$ $-0.2 (3)$ $0.6 (3)$ $-177.04 (16)$ $-0.2 (2)$ $177.34 (13)$ $177.37 (16)$ $-5.1 (2)$ $176.72 (15)$ $-12.7 (3)$ $169.78 (16)$ $179.22 (13)$ $-1.6 (2)$ $176.61 (14)$ | C3A—C4A—C5A—C6A<br>C4A—C5A—C6A—C1A<br>C2A—C1A—C6A—C5A<br>P1—C1A—C6A—C5A<br>C1A—P1—C1B—C6B<br>C1—P1—C1B—C2B<br>C6B—C1B—C2B—C3B<br>P1—C1B—C2B—C3B<br>C1B—C2B—C3B—C4B<br>C2B—C3B—C4B—C5B<br>C3B—C4B—C5B—C6B<br>C4B—C5B—C6B—C1B<br>C2B—C1B—C6B—C5B<br>P1—C1B—C6B—C5B<br>P1—C1B—C6B—C5B<br>C3=S1—C9—C10<br>S1—C9—C10—C11<br>S1—C9—C10—C11<br>S1—C9—C10—C11<br>C12—C12<br>C10—C11—C12<br>C10—C11—C12<br>C10—C11—C12—C13                                                                                                       | $\begin{array}{c} 0.0 (3) \\ 0.4 (3) \\ -0.6 (3) \\ -179.15 (14) \\ -177.27 (14) \\ 76.58 (15) \\ -1.38 (19) \\ -107.53 (17) \\ -0.4 (3) \\ -176.25 (16) \\ -0.5 (3) \\ 0.5 (3) \\ 0.5 (3) \\ 0.3 (3) \\ -1.3 (3) \\ 1.3 (3) \\ 177.49 (15) \\ -170.42 (15) \\ -175.95 (19) \\ 163.0 (4) \\ -67.3 (3) \\ 25.7 (11) \\ 177.4 (2) \end{array}$ |

| C1B—P1—C1A—C2A  | 117.75 (14)  | C12—C13—C14—C15     | 169.6 (3)  |
|-----------------|--------------|---------------------|------------|
| C1—P1—C1A—C2A   | -136.70 (14) | C13—C14—C15—C16     | 62.2 (4)   |
| C1B—P1—C1A—C6A  | -63.64 (17)  | C9—C10—C11X—C12X    | 33.4 (8)   |
| C1—P1—C1A—C6A   | 41.91 (17)   | C11—C10—C11X—C12X   | -62.1 (11) |
| C6A—C1A—C2A—C3A | 0.4 (3)      | C10-C11X-C12X-C13X  | 165.7 (7)  |
| P1—C1A—C2A—C3A  | 179.05 (15)  | C11X—C12X—C13X—C14X | 179.6 (7)  |
| C1A-C2A-C3A-C4A | 0.0 (3)      | C12X—C13X—C14X—C15X | 173.9 (7)  |
| C2A—C3A—C4A—C5A | -0.2 (3)     | C13X—C14X—C15X—C16X | 66.9 (10)  |

Hydrogen-bond geometry (Å, °)

| D—H···A                  | D—H      | H···A    | D····A      | D—H…A   |
|--------------------------|----------|----------|-------------|---------|
| N2—H2N···S2 <sup>i</sup> | 0.90 (2) | 2.45 (2) | 3.3337 (17) | 168 (2) |

Symmetry code: (i) -x+1, -y+2, -z+2.