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TRIBUTYLTIN ALTERS SECRETION OF INTERLEUKIN 1 BETA
FROM HUMAN IMMUNE CELLS

Shyretha Brown" and Margaret Whalen
“Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209

Department of Chemistry, Tennessee State University, Nashville, TN, 37209

Abstract

Tributyltin (TBT) has been used as a biocide in industrial applications such as wood preservation,
antifouling paint, and antifungal agents. Due to its many uses, it contaminates the environment and
has been found in human blood samples. Interleukin 1 beta (IL-1p) is a pro-inflammatory cytokine
that promotes cell growth, tissue repair, and immune response regulation. Produced predominately
by both monocytes and macrophages, IL-1 appears to increase the invasiveness of certain tumors.
This study shows that TBT modifies the secretion of IL-1f from increasingly reconstituted
preparations of human immune cells. IL-1p secretion was examined after 24h, 48h, or 6 day
exposures to TBT in highly enriched human NK cells, monocyte-depleted (MD) peripheral blood
mononuclear cells (MD-PBMCs), PBMCs, granulocytes, and a preparation combining both
PBMCs and granulocytes (PBMCs+granulocytes). TBT altered IL-1f secretion from all of the
cells preparations. The 200 nM concentration of TBT normally blocked the secretion of IL-1p,
while lower concentrations (usually 5-50 nM) elevated secretion of IL-1f. Examination of the
signaling pathway(s) responsible for the elevated secretion of IL-1f were carried out in MD-
PBMCs. Pathways examined were IL-1p processing (Caspase-1), mitogen-activated protein
kinases (MAPKSs), and nuclear factor kappa B (NFxB). Results indicated that MAPK pathways
(p44/42 and p38) appear to be the targets of TBT that lead to increased IL-1[3 secretion from
immune cells. These results from human immune cells show IL-1p dysregulation by TBT is
occurring ex vivo. Thus, potential for in vivo effects on pro-inflammatory cytokine levels may
possibly be a consequence of TBT exposures.

Keywords
NK cells; PBMCs; Granulocytes; Tributyltin; Interleukin 1 beta

INTRODUCTION

Interleukin 1 beta (IL-1B) is a cytokine that regulates the inflammatory response and
promotes cellular growth, and tissue repair (Apte et al., 2006; Arend, 2002; Dinarello, 1996;
2005; 2009). IL-18 is initially synthesized as a 31-kDa protein that is then processed by
Caspase-1 to its active form (17-kDa) (Swaan €t al., 2001; Dinarello, 1996). The enzyme
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that proteolytizes IL-1p in monocytes is caspase-1 also referred to as IL-1f converting
enzyme (ICE) (Kuida et al., 1995; Swaan et al., 2001). Cell types known for producing and
secreting IL-1f include monocytes, macrophages, T cells, natural killer cells, keratinocytes,
and fibroblasts (Burger and Dayer, 2002; Dinarello, 2005; Apte et al., 2006; VVoronov et al.,
2002). IL-1p appears to also be secreted by neutrophils; however, its processing in
neutrophils may be independent of Caspase-1 (Guma et al., 2009). Additionally, it has been
shown that IL-1f can act as a co-stimulator of the production of another pro-inflammatory
cytokine, interferon gamma (IFNy), in natural killer (NK) cells (Cooper et al., 2001). This
pleiotropic cytokine can also contribute to chronic inflammation in some diseases such as
rheumatoid arthritis and multiple sclerosis (Choy and Panayi, 2001; Lucas and Hohlfeld.,
1995). Additionally, chronic inflammation plays a major role in the development of cancer.
IL-1f has been detected in human cancers such as breast and pancreatic cancers and
melanoma (Arlt et al., 2002; Elaraj et al., 2006; Jin et al., 1997; Lewis and Varghese, 2006;
Muerkoster et al., 2006) and its levels of expression are linked to invasiveness of these
tumors and are essential for angiogenesis and metastasis (Voronov et al., 2002). Expression
of IL-1p at the site of tumor development boosts the ability of malignant cells to become
adhesive and invade neighboring tissues (Chirivi et al., 1996; Vidal-Vanaclocha et al.,
1996). IL-1p can stimulate tumor development as evidenced by studies showing increased
IL-1B production in human and animal cancer cell lines. These cell lines include ovarian,
sarcomas, and transitional cell carcinomas. Increased IL-1f production has been associated
with poor prognoses in patients with breast, colon, and lung cancers as well as melanomas
(Lewis and Varghese, 2006; Voronov et al., 2002).

Tributyltin (TBT) is an organotin compound that has been used as a biocide in a variety of
industrial applications such as preservation of wood, controlling of slime in paper mills,
antifungal agent in industrial cooling water systems and breweries, and antifouling paint
(Antizar-Ladislao, 2008; Gipperth, 2009; Kannan et al., 1995; Kannan et al., 1997). It is also
found in some household goods such as siliconized-paper baking parchments and shower
curtains (Yamada et al., 1993). It is known to contaminate the marine and fresh water
environment due to common use on boats and ships as an antifouling paint. TBT has been
banned in the US since 1989 (Loganathan et al., 2001) and by the International Convention
on the Control of Harmful Antifouling Systems on Ships in 2008 (Gipperth, 2009).
However, it is still contaminating the environment due to continued application on ships and
its chemical stability (Gipperth, 2009). TBT is found in fish and other foods (Kannan et al.,
1995); as a result, TBT has been found in human blood samples (ranging as high as 261 nM)
and other tissues (Antizar-Ladislao, 2008; Kannan et al., 1999; Whalen et al., 1999).
Mammals with TBT exposure show increased incidences of tumors (Wester et al., 1990).
TBT decreases the ability of human NK cells to destroy tumor cells with accompanying
decreases in cytotoxic and cell surface protein expression (Dudimah et al., 2007; Thomas et
al., 2004; Whalen et al., 2002). In addition, TBT both inhibits and stimulates the secretion of
tumor necrosis factor alpha (TNFa) and interferon gamma (IFNy) from human lymphocytes
(depending on the exposure concentration) (Hurt et al., 2013; Lawrence et al., 2014). The
importance of introducing TBT as a stress inducer to the cell environment is to understand
whether exposure to TBT disrupts normal cellular functions such as immune cell secretion
of the important regulatory cytokine IL-1B. Based on TBT’s effect on TNFa and IFNy
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secretion (Hurt et al., 2013; Lawrence et al., 2014), we hypothesize that exposure to TBT
will alter the ability of immune cells to secrete IL-1p.

In this study, an array of immune cell preparations were examined for the effects of TBT
exposures on the secretion of IL-1B. The preparations studied included: human NK cells,
human monocyte-depleted (MD) peripheral blood mononuclear cells (PBMCs) (MD-
PBMCs), PBMCs, PBMCs combined with granulocytes (PBMCs+granulocytes), and
granulocytes. The use of increasingly reconstituted immune cell preparation allows us to
investigate the influence that various immune cell types may have on the ability of TBT to
induce alteration in secretion of IL-1p, thus, better approximating the physiological
situation. An additional goal of this study is to investigate the signaling pathways that may
be involved in any TBT-induced alterations in IL-1p secretion.

MATERIALS AND METHODS
Preparation of PBMCs, MD- PBMCs, and Granulocytes

PBMCs were isolated from Leukocyte filters (PALL- RCPL or RC2D) obtained from the
Red Cross Blood Bank Facility (Nashville, TN) as described in Meyer et al., 2005.
Leukocytes were retrieved from the filters by back-flushing them with an elution medium
(sterile PBS containing 5 mM disodium EDTA and 2.5% [w/v] sucrose) and collecting the
eluent. The eluent was layered onto Ficoll-Hypaque (1.077g/mL) and centrifuged at 1200g
for 30-50 min. Granulocytes and red cells pelleted at the bottom of the tube while the
PBMC:s floated on the Ficoll-Hypaque. Mononuclear cells were collected and washed with
PBS (500g, 10min). Following washing, the cells were layered on bovine calf serum for
platelet removal. The cells were then suspended in RPMI-1640 complete medium which
consisted of RPMI-1640 supplemented with 10% heat-inactivated BCS, 2 mM L-glutamine
and 50 U penicillin G with 50 ug streptomycin/mL. This preparation constituted PBMCs.
Monocyte-depleted PBMCs (10-20% CD16%, 10-20 % CD56*, 70-80% CD3*, 3-5%
CD19%, 2-20% CD14*) were prepared by incubating the cells in glass Petri dishes (150 x 15
mm) at 37 °C and air/CO,, 19:1 for 1 h. This cell preparation is referred to as MD-PBMCS
cells. Granulocytes were isolated with the removal of mononuclear and red blood cells as
described in Kuijpers et al., 2013. Granulocytes were collected and washed with PBS (2500
rpm, 15min). Red blood cells were lysed with NH4CL isotonic solution (155mM NH4CI,
10mM KHCO3, 0.1 mM EDTA) for 10 min. Cells were then washed with PBS and
centrifuged at 800g for 10 min. The cells were then suspended in RPMI-1640 complete
medium supplemented with 10% heat-inactivated BCS, 2 mM L-glutamine and 50 U
penicillin G with 50 g streptomycin/mL.

Preparation of NK cells

NK cells were prepared from buffy coats (from healthy adult donors) purchased from Key
Biologics, LLC (Memphis, TN). Highly purified NK cells were prepared using a rosetting
procedure. RosetteSep human NK cell enrichment antibody cocktail (0.6-0.8 mL) (StemCell
Technologies, Vancouver, British Columbia, Canada) was added to 45 mL of buffy coat.
The mixture was incubated for 20 min at room temperature (~ 25° C). Approximately 8 mL
of the mixture was layered onto 4 mL of Ficoll-Hypaque (1.077 g/mL) (MP Biomedicals,
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Irvine, CA) and centrifuged at 1200 g for 30-50 min. NK cells were collected and washed
twice with phosphate buffered saline (PBS) pH 7.2 and stored in complete media
(RPMI-1640 supplemented with 10% heat-inactivated bovine calf serum (BCS), 2 mM L-
glutamine and 50 U penicillin G with 50 ug streptomycin/ml) at 1 million cells/mL at 37 °C
and air/CO,, 19:1.

Chemical Preparation

TBT was purchased from Sigma-Aldrich (96%) (St. Louis, MO). Desired concentrations of
TBT were prepared by dilution of the stock into cell culture media. TBT was a neat
standard, dissolved initially in deionized water to give a 1 mM solution.

Inhibitor Preparation

Enzyme inhibitors were purchased from Fischer Scientific (Pittsburgh, PA). The stock
solution for each inhibitor was a 50 mM solution in dimethylsulfoxide (DMSO). Capase-1
inhibitor 1, MEK 1/2 pathway inhibitor (PD98059), p38 inhibitor (SB202190), MEK 1/2
pathway inhibitor (U0126), and NFxB inhibitor (BAY11-7085) were prepared by dilution of
the stock solution into cell culture media.

Cell Treatments

NK cells, MD-PBMCs, PBMCs, granulocytes (at a concentration of 1.5 million cells/ mL),
or PBMCs+granulocytes (at a concentration of 0.75 million cells/mL each) were treated with
TBT at concentrations of 2.5-200 nM TBT for 24h, 48h, or 6 days. Following the
incubations, the cells were pelleted and supernatants were collected and stored at -70° C
until assaying for IL-1p.

For pathway inhibitor experiments, MD-PBMCs (at a concentration of 1.5 million cells/
mL) were treated with pathway inhibitors 1h before adding TBT at concentrations of 5, 10,
25 nM TBT for 24h. Following the incubations, the cells were pelleted and supernatants
were collected and stored at -70 C until assaying for IL-1f.

Cell Viability

Cell viability was assessed at the beginning and end of each exposure period. Viability was
determined using the trypan blue exclusion method. Briefly, cells were mixed with trypan
blue and counted using a hemocytometer. The total number of cells and the total number of
live cells were determined for both control and treated cells to determine the percent viable
cells.

IL-1 B Secretion Assay

IL-1 B levels were measured using the BD OptEIA™ Human IL-1 § enzyme-linked
immunosorbent assay (ELISA) kit (BD-Pharmingen, San Diego, CA). Briefly, a 96-well
micro well plate, designed for ELISA (Fisher, Pittsburgh, PA), was coated with a capture
antibody for IL-1f diluted in coating buffer. The plate was incubated with the capture
antibody overnight at 4 °C. After incubation, the capture antibody was removed by washing
the plate three times with wash buffer (PBS and 0.05% Tween-20). Assay diluent (PBS and
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bovine calf serum) was added to each well (blocking non-specific binding) and incubated at
room temperature for 1h. The assay diluent was removed by washing the plate three times,
and the cell supernatants and IL-1f standards were added to the coated plated and incubated
for 2 h at room temperature. Following this incubation, the plate was thoroughly washed
five times and then incubated for 1h with a detection antibody to IL-1p which was
conjugated with horseradish peroxidase. The excess detection antibody was removed by
washing seven times and a substrate solution was added for 30 min at room temperature to
produce a colored product. The incubation with the substrate was ended by addition of acid
and the absorbance was measured at 450 nm on a Thermo Labsystems Multiskan MCC/340
plate reader (Fisher Scientific).

Statistical Analysis

Statistical analysis of the data was performed by using ANOVA and Student’s t test. Data
were initially compared within a given experimental setup by ANOVA. A significant
ANOVA was followed by pair wise analysis of control versus exposed data using Student’s
t test, a p value of less than 0.05 was considered significant.

RESULTS

Viability of NK cells, MD-PBMCs PBMCs, PBMCs+ Granulocytes, and Granulocytes
exposed to TBT

Table 1 shows the effects of TBT exposures (2.5-200 nM) on the viability of highly purified
NK cells, MD-PBMCs, PBMCs, PBMCs+granulocytes, and granulocytes. Exposure of NK
cells to 2.5-100 nM TBT for 24 h had no effect on their viability as compared to the control.
The highest concentration of TBT (200nM) caused a slight decrease in NK cell viability.
Exposure to these same concentrations for 48h caused no decrease in viability compared to
control cells except at the highest concentration of TBT. NK cells exposed to 2.5-50 nM
TBT for 6 days showed no change in viability as compared to the control; but, 200nM and
200nM exposures did significantly reduce viability. MD-PBMCs showed a very slight
decrease in viability with exposure to 200 nM TBT for 24 h. The viability of both MD-
PBMCs and PBMCs was somewhat decreased by exposure to 200 nM TBT for 48 h. After 6
days both 100 nM and 200 nM TBT caused some decrease in viability of both MD-PBMCs
and PBMCs. Exposure of PBMCs+granulocytes and granulocytes alone to 2.5-200 nM TBT
for 24 h had no effect on their viability as compared to the control. Exposure to 200 nM
TBT for 48h significantly diminished the viability of PBMCs+granulocytes. After 6 days of
exposure to 200 nM TBT both, PBMCs+granulocytes and granulocytes showed some
decrease in viability as compared to controls.

Viability of monocyte-depleted PBMCs with pathway inhibitors exposed to TBT

Table 2 shows the effects of TBT exposures (5, 10, 25nM) on the viability of MD-PBMCs
that were treated with various signaling pathway inhibitors 1 hour prior to adding the
appropriate concentrations of TBT. No significant changes in viability were seen with any of
the inhibitors when compared to control cells.

J Appl Toxicol. Author manuscript; available in PMC 2016 August 01.
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Effects of TBT Exposure on Secretion of IL-1p by NK cells

Table 3 shows the effects of exposing highly purified NK cells to 0, 2.5, 5, 10, 25, 50, 100
and 200 nM TBT for 24 h, 48 h, and 6 days on IL-1p secretion from 4 donors tested
(KB=Key Biologic buffy coat). All donors showed significant decreases in IL-1 when
exposed to 200 nM TBT for all lengths of exposure. Cells from all 4 donors showed a
significant increase in IL-10 secretion when exposed to 5, 10, and 25nM TBT.
Concentrations that caused increases varied from one donor to the next. For instance, the
cells from donor KB166 treated with 2.5, 5, 10, 25, 50, and 100 nM TBT showed significant
increases of 1.1, 1.4, 1.7, 1.9, 2.1, and 1.4 fold respectively after 24 h while cells from donor
KB169 showed significant increases of 1.7, 3.4, 6.7, 6.2, 7.7, and 6.3 fold at these same
concentrations. When NK cells were exposed to TBT for 48 h, all 4 donors showed
significant increases in IL-1p secretion at one or more concentration. After 6 d of exposure,
all donors display significant decreases in IL-1f secretion at 200 nM TBT and increases at
10 and 25 nM TBT. Figure 1A shows the effects of TBT exposures on IL-1f secretion at
each of the time points for an individual donor (KB166).

Effects of TBT Exposure on Secretion of IL-1pf by MD-PBMCs

The effects of exposures to TBT on secretion of IL-18 from MD-PBMCs after 24 h, 48 h,
and 6 d from 5 donors (F=filter obtained from the Red Cross) are shown in Table 4. This
preparation is largely NK cells and T cells. When MD-PBMCs were exposed to TBT for 24
h there were statistically significant increases in IL-1f secretion induced by TBT for all
donors at the 25 and 50 nM concentrations with variation in the fold increase among
different donors (F142 showed 2.0 and 2.1 fold, respectively while F156 showed 4.1 and 5.4
fold, respectively). Significant decreases in IL-1f secretion were seen at 200 nM TBT for 3
of the 5 donors after a 24 h exposure. The results seen after a 48 h of exposure to TBT were
similar to those seen after 24 h. Increases were seen in every donor after a 6 d exposure to
TBT, however, the number of concentrations that showed significant increases were fewer.
Figure 1B shows the effects of TBT exposures at each of the lengths of exposure for an
individual donor (F142).

Effects of TBT Exposure on Secretion of IL-18 by PBMCs

Table 5 summarizes the effects of exposing PBMCs from 5 individual donors to TBT on
IL-1p secretion (F=filter obtained from the Red Cross). As with NK cells and MD-PBMCs,
there was rather wide variation in the baseline secretion of IL-1p from one donor to the next
at each time point. A 24 h exposure to 200 nM TBT, caused a significant decrease (P<0.05)
in IL-1p secretion in 4 of the 5 donors. Significant increases in IL-1p secretion were seen in
all donors at 50 nM. Additional concentrations of TBT caused increases in IL-1[3 secretion
depending on the donor. For instance, cells from donor F144 treated with 5, 10, 25, 50, and
100 nM TBT showed significant increases of 1.4, 1.4, 1.6, 2.6, and 2.2 fold, respectively
while donor F147 treated with 2.5, 5, 10, 25, 50, and 100 nM TBT showed significant
increases of 1.5, 1.6, 2.7, 2.6, 4.4, and 3.8 fold, respectively. 48 h exposures of PBMCs to
200 nM TBT caused significant decreases in IL-1f for all donors and significant increases at
50 nM. After 6 days of exposure, still 4 of the 5 donors showed a significant decrease in

J Appl Toxicol. Author manuscript; available in PMC 2016 August 01.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Brown and Whalen Page 7

IL-1p secretion compared to the control when exposed to 200 nM TBT. Figure 1C shows the
effects of TBT exposures at each of the lengths of exposure for an individual donor (F144).

Effects of TBT Exposure on Secretion of IL-1p by PBMCs+Granulocytes

Effects of exposing PBMCs+granulocytes to TBT f on IL-1f secretion from the same 5
donors as for PBMCs alone are shown in Table 6 (F=filter obtained from the Red Cross).
Like the previous cell types discussed, the concentrations that caused increases and
decreases in IL-1f secretion varied from one donor to the next in all lengths of exposures as
did baseline secretion. In contrast to the other cell types, including PBMCs alone, there were
significant increases of IL-1B noted for 200 nM TBT for 4 of the 5 donors at 24h and 2 of
the 5 donors at 48h. Cells from donor F144 treated with 10, 25, 50, 100, and 200 nM TBT
showed fold increases at 1.5, 1.8, 1.5, 1.7, and 1.7, respectively at 24 hand 1.4, 1.5, 1.6, 1.6,
and 1.2, respectively at 48 h. After 6 days of exposure, control secretion of IL-1p was
diminished compared to 24 h and 48 h; and the changes in (increases or decreases) of IL-1
seen at each concentration of TBT were normally quite small. Figure 1D shows the effects
of TBT exposures at each of the lengths of exposure for an individual donor (F144).

Effects of TBT Exposure on Secretion of IL-1p by Granulocytes

The effects of exposures to TBT on secretion of IL-18 from granulocytes after 24 h, 48 h,
and 6 d from the same 5 donors as for PBMCs alone (F=filter obtained from the Red Cross)
are shown in Table 7. Baseline secretion of IL-1p from granulocytes was quite low, being
undetectable in 1 donor at 24 h and in all donors by 6 days. When granulocytes were
exposed to TBT for 24 h there were statistically significant increases in IL-1f secretion
induced by at least 1 concentration of TBT for 4 of 5 donors. Figure 1E shows the effects of
TBT exposures at each of the lengths of exposure for an individual donor (F144). Although
IL-1 secretion was lower for granulocytes than all other cell types tested, there were still
significant decreases and increases in IL-1p secretion induced by 24 and 48 h exposures to
TBT.

Effects of TBT Exposure on Secretion of IL-1p by MD-PBMCs treated with Selective
Signaling Pathway Inhibitors

IL-1B Cleavage Inhibitor (Caspase-1 Inhibitor 11)—The effects of exposures to 5, 10,
and 25 nM TBT on secretion of IL-13 from MD-PBMCs where Caspase-1 had been
inhibited with Caspase-1 inhibitor Il (50 uM) are shown in Table 8. Caspase-1 inhibitor Il
inhibited baseline IL-1f production as this enzyme is required for IL-1f3 processing.
However, cells exposed to TBT showed similar fold increases in IL-1f secretion in both the
presence and absence of the inhibitor. Figure 2A shows the fold increases from a
representative experiment (F182). There are 1.3, 1.6, and 1.7 fold increases when MD-
PBMCs are exposed to 5, 10, and 25 nM in the absence of the Caspase-1 inhibitor. When the
inhibitor is present those same TBT exposures are still able to cause 1.3, 1.6, and 2.0 fold
increases in IL-1p secretion (albeit on a much lower baseline). This same trend was seen in
all of the donors tested (Table 8). Thus, although the baseline secretion was greatly
decreased by the presence of the inhibitor, TBT was still able to cause the same magnitude
of increase in IL-1f secretion as was seen when no inhibitor was present. This indicates that
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Caspase-1 (needed for IL-1p processing) is not being activated by TBT to increase IL-13

secretion, since the magnitude of the TBT-induced increase should have been diminished
when caspase-1 was inhibited if TBT had been activating this enzyme in order to increase
IL-1p secretion.

Nuclear Factor kappa B (NFxB) Inhibitor (BAY 11-7085)—The effects of exposures
to 5, 10, and 25 nM TBT on secretion of IL-1f from MD-PBMCs where NFxB function had
been inhibited with BAY 11-7085 (1.25 uM) are shown in Table 9. BAY 11-7085 inhibited
baseline IL-1P production. However, cells exposed to TBT showed no diminution in fold
increase in IL-1[ secretion when the inhibitor was present. In Figure 2B (representative data
from F218) there are 1.9, 3.0, and 4.8 fold increases when MD-PBMCs are exposed to 5, 10,
and 25 nM in the absence of NFkB inhibitor. When the inhibitor is present those same TBT
exposures cause 2.8, 4.9, and 5.3 fold increases in IL-1f secretion. Cells from each of the
donors tested showed this same pattern (Table 9). Thus, like the Caspase-1, NFkB does not
seem to be a cellular component that TBT is activating in order to increase the secretion of
IL-1p from the cells, as the fold increase in secretion is not diminished by the inhibition
NF«B function.

Mitogen activated protein kinase kinase (MAP2K), MEK, Inhibitor (U0126)—The
effects of exposures to 5, 10, and 25nM TBT on secretion of IL-18 from MD-PBMCs where
the mitogen activated protein kinase kinase (MAP2K) for p44/42, MEK, had been inhibited
with U0126 (50 pM) are shown in Table 10. U0126 had varying effects on baseline IL-1f
secretion; however, cells exposed to TBT showed a lower fold increase in IL-1f3 secretion in
the presence of the inhibitor. In Figure 2C (representative data from F181) we see there are
2.1, 3.3, and 4.3 fold increases when MD-PBMCs are exposed to 5, 10, and 25 nM TBT in
the absence of MEK inhibitor. When the inhibitor is present those same TBT exposures are
able to cause 1.1, 1.3, and 1.2 fold increases in IL-1p secretion. In 3 of the 4 donors tested
the ability of TBT to increase I1L-1f secretion was blocked or significantly decreased when
the p44/42 pathway was inhibited (Table 10) in the 41 donor the ability of 5 nM TBT to
increase IL-1 secretion was blocked. This indicates that the p44/42 MAPK pathway is
being utilized by TBT to lead to the increase in IL-1f3 secretion.

p38 Inhibitor (SB202190)—The effects of exposures to 5, 10, and 25nM TBT on
secretion of IL-1p from MD-PBMCs where p38 had been inhibited with SB202190 (25-50
UM) are shown in Table 11. p38 inhibitor inhibited baseline IL-1p secretion and also
diminished the ability of TBT to stimulate IL-1f secretion from MD-PBMC:s. In Figure 2D
we see there are 2.5, 3.6, and 5.1 fold increases when MD-PBMC:s are exposed to 5, 10, and
25 nM TBT in the absence of p38 inhibitor. When the inhibitor is present those same TBT
exposures are able to cause 2.8, 1.5, and 2.6 fold increases in IL-1f secretion. Three of the 4
donors tested showed that inhibition of the p38 pathway diminished or completely blocked
the ability of at least one concentration of TBT to simulate IL-15 secretion (Table 11).
However, 1 donor showed no decrease in TBT-stimulation of IL-1f secretion when the p38
pathway was inhibited. These results suggest that the p38 pathway may be utilize by TBT to
stimulate IL-1f secretion, with significant variation among donors.
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DISCUSSION

IL-1f is an inflammatory cytokine that contributes to chronic inflammation which can
increase tumor invasiveness (Voronov et al., 2003). TBT is known to contaminate the
marine and fresh water environment due to common use on boats and ships as an antifouling
paint (Gipperth, 2009) and levels as high as 261 nM have been found in human blood
samples (Kannan et al., 1995; Whalen et al., 1999). TBT can decrease the ability of human
NK cells to destroy tumor cells (Dudimah et al., 2007) and alter the secretion of TNFa and
IFNy from immune cells (Hurt et al., 2013; Lawrence et al. 2014). As alterations of levels of
IL-1B can have profound effects on immune competency as well as tumor development and
progression (Dinarello, 2009), it is important to determine whether TBT is able to alter the
secretion of IL-p from immune cells in an ex vivo human model. In this study, increasingly
reconstituted human immune cell preparations were used (NK cells, MD-PBMCs, PBMCs,
PBMC+granulocytes, and granulocytes) to determine the effects of TBT on IL-f secretion.
Additionally experiments to identify signaling pathways involved in TBT-induced
alterations of IL-1p levels were also conducted.

Baseline secretion of IL-1p varied among the different cell preparations. NK cells and MD-
PBMCs showed very similar baseline secretions. The presence of monocytes caused a
greater baseline secretion for PBMCs. This is expected due to the fact that monocytes (along
with macrophages) are the major IL-1f secreting cell type (Dinarello, 2009). Granulocytes
alone showed very low baseline secretion of IL-1f8. Granulocytes have been shown by others
to be capable of secreting IL-1p (Guma et al., 2009). The concentration at which TBT
caused the maximum fold increase in IL-f} from each of the different cell types (after 24 h of
exposure) varied among the donors. The average of the maximum fold increase (from each
donor, 4 donors) for pure NK cells was 3.2 fold (this ranged from 1.3 fold to 7.8 fold over
the range of 2.5-100 nM). For MD-PBMC:s, the average of the greatest fold increase (5
donors) was 11.2 fold (ranging from 1.8-33 fold over 2.5-100 nM depending on the donor)
and for PBMCs the value was 2.6 fold (again from 5 donors) increases ranged from1.4-4.4
fold. PBMCs plus granulocytes showed an average highest increase in TBT-stimulated
IL-1p secretion of 4.7 fold (same 5 donors as the PBMCs alone) with at range of 1.3-16 fold.
While the average of the maximum increase is higher from PBMCs plus granulocytes than
from PBMCs alone this is entirely due to the highest value being much greater in one donor
(16 fold) than was seen in the PBMCs. All other donors showed similar maximum secretion
values in both the PBMCs alone and the PBMCs plus granulocytes. Granulocytes alone
exhibited an average maximum increase of 3.8 fold (ranging from 2-12 fold). However, as
mentioned above, the overall level of secretion was very small from this cell preparation.
These results indicate that TBT has the greatest ability to increase IL-1p secretion from the
MD-PBMCs (a preparation that is predominantly T and NK lymphocytes). This suggests
that in the in vivo setting that those areas where there is an enrichment of T and NK
lymphocytes may be more susceptible to potential dysregulation by exposures to TBT, such
as the tumor microenvironment (Whiteside, 2008). The fact that there is greater average
secretion stimulated in the MD-PBMCs suggests that there may be TBT-stimulated secretion
of another factor when T cells are the dominant cell type that stimulates IL-1f3 secretion
from the T cells and or other cell types present in this cell preparation. T cells are major
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producers of IFNy and IFNvy has been shown to increase secretion of IL-1p from human
immune cells (Masters et al., 2010). Recently, we have shown that TBT greatly increases the
secretion of IFNy from MD-PBMCs over the range of 2.5-100 nM after 24 h (Lawrence et
al., 2014) and this IFNy may then lead to the increase in IL-1f seen in this particular cell
preparation. 200 nM TBT normally blocked or decreased IL-1 secretion from NK cells,
MD-PBMCs and PBMCs, while increases in IL-1p secretion were seen with TBT
concentrations ranging from 2.5 to 100 nM (depending on the donor). These data suggest
that TBT is affecting similar pathways in NK cells, T cells, and monocytes. However, when
granulocytes are present in the reconstituted cell preparation (PBMCs + granulocytes)
exposure to 200 nM TBT caused a significant increase in IL-1f production in 4 of the 5
donors. This is in stark contrast to the effects of 200 nM TBT on PBMCs, which caused a
large decrease in IL-1f secretion in these same donors. The effects of 200 nM TBT
exposures on granulocytes (alone) from these donors indicate that granulocytes were not
responsible for the increased IL-1f secretion seen at 200 nM TBT in the PBMC+
granulocyte preparation. Interestingly, the effects of lower concentrations of TBT on
granulocytes showed a similar pattern as seen with the other cell preparations (increased
IL-1p secretion) albeit on a much lower baseline. This suggests that granulocytes are able to
reverse the negative effects of 200 nM on IL-18 secretion from PBMCs, but do not
appreciably alter the effects of TBT at lower concentrations. One explanation for this effect
may be that, due to TBT binding to the granulocytes, a lower effective concentration of TBT
is seen by the PBMCs. As the data shows, a small shift in the effective concentration of TBT
could take it from a level that is inhibitory to one that is stimulatory of IL-1f secretion. It
might be expected that TBT will bind to components within the cell with varying affinity. At
higher concentrations of TBT such as 200 nM you would expect that the largest number of
components capable of interacting with TBT would do so and that this would result in
multiple (and possibly competing) effects including toxic effects that lead to an increased
level of cell death over time (as is seen in the viability data). As the concentrations decreases
(such as at 10 or 25 nM) TBT will interact with far fewer components and may show a
completely opposite effect (from that seen at higher concentrations) depending on the nature
of the component(s) that it influences. This appears to be the case with respect to IL-1
secretion. At 200 nM TBT is inhibitory to this process, while at 10 nM it is stimulatory.
Overall, the data indicates that TBT-induced alterations of IL-1f secretion from human
immune cells may be a significant consequence of TBT exposures and that TBT may
potentially affect immune competence and cancer invasiveness.

Several signaling pathways are involved in the production/secretion of IL-1p from immune
cells. They include caspase 1, NFxB, and MAPKSs (p44/42 and p38). We found that
inhibition of caspase-1 did not affect TBT-induced secretion, indicating that while this
enzyme is critical for secretion of IL-1f from immune cells it does not seem to be necessary
for TBT-induced increases in IL-1p secretion. Thus, it is apparently not one of the cellular
components that is bound by TBT at concentrations of 5-25 nM. NF«B is a signaling
component that is required for the transcription of several cytokine genes including the
IL-1P gene (Cogswell et al., 1994; Perez et al., 1997; Scheibel et al., 2010). The results of
this study indicate that, like the caspase-1 pathway, the NF«xB pathway is also not a target of
TBT at those concentrations where TBT causes increases in IL-1p secretion. p44/42 MAP
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kinase (ERK 1 and ERK 2) plays an important role in cell growth regulation (Cowley et al.,
1994; Hunter et al., 1995; Marshall, 1995). Activation of p44/42 leads to activation of the
AP-1 transcription activator (composed of fos and jun genes) leading to an increase of IL-1
transcription (Glauser et al., 2007). When the p44/42 pathway was inhibited by a MEK
inhibitor, TBT-induced increases in IL-13 secretion were blocked. These results suggest that
TBT causes p44/42 pathway activation which then results in increased IL-1f synthesis and
secretion. Previous studies have shown that TBT is capable of activating p44/42 in highly
purified NK cells (Abraha et al., 2008). The current results indicate a need to examine
p44/42 activation by TBT in MD-PBMCs. The MAPK, p38, has also been shown to regulate
the production of cytokines (Davis et al., 1995; Young et al., 1993) including IL-1f by
activation of C/EBPB/NFIL-6 transcription activator (Baldassare et al., 1999). Inhibition of
the p38 pathway diminished TBT-induced IL-1p secretion in 3 of the 4 donors tested. This
suggests that a component(s) of the p38 may also be a target of lower concentrations of TBT
leading to increased IL-1p secretion. Figure 3 summarizes the pathways that may be
involved in regulating IL-1p synthesis and secretion.

Sterile inflammation is a term used to describe inflammation occurring in the absence of a
microorganism (Chen and Nunez, 2010). Chemical exposure could result in sterile
inflammation by its ability to induce the production of pro-inflammatory cytokines such as
IL-1B. TBT may have this potential. Our ex-vivo results indicate that at low exposure
concentrations TBT increases levels of IFNy, TNFa (Lawrence et al., 2014; Hurt et al.,
2013), and IL-1pB. Concentrations of TBT as low as 2.5 nM were able to increase IL-1p
secretion and we know from past studies a majority of donors tested had blood levels that
exceeded 2.5 nM (Kannan et al., 1999; Whalen et al., 1999). If TBT were to have similar
effects in vivo, then exposure may have the potential to cause chronic inflammation, which
has a host of negative consequences including, exacerbation of symptoms in multiple
sclerosis and rheumatoid arthritis (Lucas and Hohlfeld, 1995; Choy and Panayi, 2001) as
well as enhanced tumor development and progression (Lewis and Varghese, 2006).

The current study indicates that TBT alters IL-18 secretion from increasingly reconstituted
preparations of human immune cells. The highest concentration of TBT tested blocked
secretion of IL-1p from highly purified NK cells, MD-PBMCs, and PBMCs; however, when
granulocytes were added to PBMCs, 200 nM TBT now increased IL-1f secretion. Lower
concentrations of TBT elevated secretion of IL-1p from NK cells, MD-PBMCs, PBMCs,
and granulocytes. This study also indicates that components of the p44/42 and possibly p38
MAPK pathways are targets of TBT. The fact that these pathways are both known to
regulate IL-1B production (Baldassare et al., 1999; Glauser et al., 2007), and are needed for
the TBT-induced secretion of I1L-1f suggests that increased IL-1f transcription and
translation are a requirement for this effect.
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Figure 1.

Effects of 24 h, 48 h and 6 day exposures to TBT on IL-1p secretion from highly purified
human NK cells, monocyte-depleted PBMCs, PBMCs, PBMCs plus granulocytes, and
granulocytes in individual donors. A) NK cells exposed to 0-200 nM TBT (donor KB166).
B) Monocyte-depleted PBMCs exposed to 0-200 nM TBT (donor F142). C) PBMCs
exposed to 0-200 nM TBT (donor F144). D) PBMCs plus granulocytes exposed to 0-200
nM TBT (donor F144). E) Granulocytes exposed to 0-200 nM TBT (donor F144).
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Effects of 24 h exposure to 5, 10, and 25 nM TBT on IL-1p secretion from monocyte-
depleted PBMCs treated with selective pathway component inhibitors in individual donors.
A) IL-1p Cleavage Inhibitor (Caspase-1 Inhibitor I1) (donor F182). B) NFxB Inhibitor
(BAY 11-7085) (donor F218). C) MEK ¥2(p44/42) Inhibitor (U0126) (donor F181). D) P38

Inhibitor (SB202190) (donor F183).
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Signaling Cascade Involved in IL-13 Secretion
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Figure 3.
Signaling pathways regulating IL-1f secretion.
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Table 3

Effects of 24 h, 48 h, 6 day exposures to TBT on IL-1f secretion from highly purified human NKs.

24 h Interleukin 1 beta secreted in pg/mL (meanS.D.)
[TBTInM  KB166 KB167  KB168 KB169
0 76114 29445 1623+46 7129
25 869+44" 455482 2034484" 12513
5 1063£97"  424+10°  1943+59" 24511
10 1326+82"  463+x4"  1730+11" 47421
25 1444+47"  439E78  2135449" 443424
50 1609+20°  358+15°  1621#59 551410
100 1065+22"  99+101  36246" 44629"
200 010" 026" 02" 010"
48 h Interleukin 1 beta secreted in pg/mL (mean+S.D.)
[TBT]nM  KB166 KB167  KB168 KB169
0 120648 402+10  2101#322  281#10
25 1161496  383%16  97g14105” 327439
5 135867 37931  2624+36  gog450"
10 1740482" 43024 264778 1302447
25 1937491"  444+6*  2427£156 1578475
50 J025407° 43528 2039+31 1726448
100 1475+32" 186" 510210 801+51"
200 61+52" 011" 011" 045"
6day Interleukin 1 beta secreted in pg/mL (meanS.D.)
[TBTInM  KB166 KB167  KB168 KB169
0 88330 101411 1748424 49018
25 535+42°  221.+33" 1821#106  3gg409"
5 773+13"  225+49"  2065x32"  438+16"
10 1062+62"  180+33°  1968+41" 105123
25 1124+69"  213+7°  1960467" 954424
50 1281+40°  129+9" 162364 1026431
100 1042+18" 02" 250211 390+8"
200 32+3" 014" 04" 016"

Values are mean%S.D. of triplicate determinations.

*
Indicates a significant change in secretion compared to control cells (cells treated with vehicle alone), p<0.05

J Appl Toxicol. Author manuscript; available in PMC 2016 August 01.
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Effects of IL-1p Cleavage Inhibition (Caspase-1 Inhibitor Il (ClI)) on TBT-induced IL-1f secretion from MD-

Table 8

PBMCs
24 h Interleukin 1 beta secreted in pg/mL (meanS.D.)
[TBT]nM  F181 F182 F183 F185
0 853+23 4401220 14162147 7634426
0+Cl 44%7 1029+38 21548 2544+174
5 1376+72°  5725#513°  2484+147° 8148+39%4
5+Cl 152+65 l324i110** 333135** 2434+190
10 1770+68"  6928+268"°  3712+156°  7838+308
10+Cl 227456™  1509+121°" 57582  2846%36
25 2347+4202°  7575+447°  5041+154"  10049+183"
25+Cl 246+12™" 20874105  1018+35"°  3998+194"*

Values are mean+S.D. of triplicate determinations.

*
indicates a significant increase compared to no TBT (0), p<0.05;

*%

indicates a significant increase compared to no TBT+inhibitor (0+ClI), p<0.05
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Effects of NFxB Inhibition (BAY 11-7085 (BAY)) on TBT-induced IL-1f secretion from MD-PBMCs.

Table 9

24 h Interleukin 1 beta secreted in pg/mL (mean+S.D.)
[TBTInM F218 F219 F225
0 805+64 754254 520+151
0+BAY 152437 234+28 190+21
5 155157 1749+141" 75342
5+BAY 420492 923+254™" 1042+212™"
10 2434+239" 3185+96" 1921+473"
10+BAY  739+149™" 15234266 1476+331™"
25 3838120 2647+132" 1616+121"
25+BAY  go5+29™ 1278+213"" 1476+25""

Values are mean+S.D. of triplicate determinations.

*

indicates a significant increase compared to no TBT (0), p<0.05;

*%

indicates a significant increase compared to no TBT+inhibitor (0+BAY), p<0.05
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Table 10
Effects of p44/42 Pathway Inhibition (U0126 (U)) on TBT-induced IL-1f secretion from MD-PBMCs.

24 h Interleukin 1 beta secreted in pg/mL (mean+S.D.)
[TBT]nM F181 F182 F183 F185
0 643+96 2778121  1519+68 6310+100

0+U 768+102  4969+96  1437+116  2836+106
5 1377+50" 4544+233" 2836x134"  7608342"
5+U 8304104 52804309  g30444540°% 3042384

10 2117474  6100£237°  4279+205°  8560+166"
10+ U 981+27 5406+344 2246i314** 5187i228**

25  2783+9"  7000+149° 5771+185°  8836x186"
25+ U 955+18 3755+392 2574il30** 6691i122**

Values are mean+S.D. of triplicate determinations.

*
indicates a significant increase compared to no TBT (0, p<0.05);

**
indicates a significant increase compared to no TBT+inhibitor (0+U), p<0.05
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Effects of p38 Inhibition (SB202190 (SB)) on TBT-induced IL-1f3 secretion from MD-PBMCs.

Table 11

24 h Interleukin 1 beta secreted in pg/mL (meanS.D.)
[TBTInM F183 F185 F236 F237
0 14594119 61534322 25374180  968+113
0+SB 149396 1249473 48362 541+29
5 3640+110° 67114201 4365+369"  1280+95"
5+SB  4176+442"" 1454454 16184238 1510453
10 5222+158"  9791+250"  4356x513"  2289+103"
10+SB  2199+87** 87230 1477¢90""  1479+19™*
25 75044204  7679+30°  6807+629°  4348x71
25+SB  3g71+200"" 1048£12 17014157  1065+22"

Values are mean+S.D. of triplicate determinations.

*

indicates a significant increase compared to no TBT (0), p<0.05;

*%

indicates a significant increase compared to no TBT+inhibitor (0+SB), p<0.05
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