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F -SINGULARITIES UNDER GENERIC LINKAGE

LINQUAN MA, JANET PAGE, REBECCA R.G., WILLIAM TAYLOR, AND WENLIANG ZHANG

Dedicated to Prof. Craig Huneke on the occasion of his 65th birthday

Abstract. Let R = k[x1, . . . , xn] be a polynomial ring over a prefect field of positive characteristic. Let
I be an equi-dimensional ideal in R and let J be a generic link of I in S = R[uij ]c×r. We describe the
parameter test submodule of S/J in terms of the test ideal of the pair (R, I) when a reduction of I is a
complete intersection or almost complete intersection. As an application, we deduce a criterion for when
S/J has F -rational singularities in these cases. We also compare the F -pure threshold of (R, I) and (S, J).

1. Introduction

Let R = k[x1, . . . , xn] be a polynomial ring over a field of positive characteristic. Let I = (f1, . . . , fr) be an
equi-dimensional ideal in R of height c, where equi-dimensional means that all associated primes of I have the
same height [Mat86]. We can define a regular sequence g1, . . . , gc in S = R[uij ]c×r via gi := ui1f1+· · ·+uirfr,
where the uij are variables over S. Then J = (g1, . . . , gc) : I is called a generic link of I in S = R[uij ].
The study of generic linkage has attracted considerable attention and has been developed widely from both
algebraic and geometric points of view [HU87], [HU88], [CU02], [EHU04], [Niu14].

In contrast to the quick and deep development of singularity theories in the past decades, much less
has been known about the behaviors of singularities under generic linkage. A special case is a result of
Chardin and Ulrich [CU02] which says that if R/I is a complete intersection and has rational (resp. F -
rational) singularities, then a generic link S/J also has rational (resp. F -rational singularities). This result
in characteristic zero has been vastly extended in recent work of Niu [Niu14], which is our main motivation
for this research.

Theorem 1.1 (Theorem 1.1 in [Niu14]). Let J be a generic link of a reduced and equidimensional ideal I
in S = R[uij ] and assume that the characteristic of k is 0. We have

(1) ωGRS/J
∼= J (R, Ic) · (S/J), where ωGRS/J denotes the Grauert-Riemenschneider canonical sheaf of S/J

and J (R, Ic) denotes the multiplier ideal of the pair (R, Ic),
(2) lct(S, J) ≥ lct(R, I). In particular, if the pair (R, Ic) is log canonical, then the pair (S, Jc) is also

log canonical.

This result gives a nice criterion for a generic link to have rational singularities in characteristic 0. It also
has applications to bounding the Castelnuovo-Mumford regularity of projective varieties [Niu14, Corollary
1.2]. Since test ideals and F -pure thresholds are characteristic p analogues of multiplier ideals and log
canonical thresholds (c.f. [BST15] and [HY03]), it is natural to ask whether analogues of Theorem 1.1 hold
for test ideals and F -pure thresholds. Our main result is the following, which partially extends Theorem 1.1
to characteristic p and generalizes [CU02, Theorem 3.13] in characteristic p.

Theorem 1.2 (Theorem 3.3, Corollary 4.4). Let J be a generic link of an equi-dimensional ideal I in
S = R[uij ] and assume the characteristic of k is p > 0.

(1) Suppose I is reduced and that a reduction of I is a complete intersection or an almost complete
intersection. Then τ(ωS/J ) ∼= τ(R, Ic) · (S/J), where τ(ωS/J ) denotes the parameter test submodule
and τ(R, Ic) denotes the test ideal of the pair (R, Ic).

(2) Suppose that a reduction of I is a complete intersection. Then fptS(J) ≥ fptR(I). In particular, if
the pair (R, Ic) is F -pure, then the pair (S, Jc) is also F -pure.

This paper is organized as follows: in Section 2 we recall and prove some basic result for F -singularities
and test ideals; in Section 3 we give a description of the parameter test submodule of S/J in terms of the test
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ideal of the pair (R, I), when a reduction of I is a complete intersection or an almost complete intersection.
This generalizes earlier results in [CU02]. In Section 4 we compare the F -pure threshold of the pairs (S, J)
and (R, I) when a reduction of I is a complete intersection.

Acknowledgements. Part of this work was done at Mathematics Research Community (MRC) in Com-
mutative Algebra in June 2015. The authors would like to thank the staff and organizers of the MRC and
the American Mathematical Society for their support. The first author would like to thank Karl Schwede,
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third author was partially supported by the NSF grant DGE #1256260. The fifth author was partially
supported by the NSF grant DMS #1606414. The authors thank the referee for some comments which lead
to improvement of the presentation of the paper.

2. F -singularities and test ideals

In this section we collect some basic definitions of F -singularities and test ideals and prove a characteristic
p > 0 analogue of Ein’s Lemma in [Niu14], which will be used in later sections.

Let R be a Noetherian commutative ring of characteristic p > 0. We will use F e∗R to denote the target of

the e-th Frobenius endomorphism F e : R
r 7→rp

e

−−−−→ R, i.e. F e∗R is an R-bimodule, which is the same as R as
an abelian group and as a right R-module, that acquires its left R-module structure via the e-th Frobenius

endomorphism F e : R
r 7→rp

e

−−−−→ R. When R is reduced, we will use R1/pe to denote the ring whose elements
are pe-th roots of elements of R. Note that these notations (when R is reduced) F e∗R and R1/pe are used
interchangeably in the literature; we will do so in this paper as well assuming no confusion will arise.

Remark 2.1. If R is a commutative ring essentially of finite type over a perfect field of characteristic p > 0,
then R admits a canonical module denoted by ωR. Applying HomR(−, ωR) to the e-th Frobenius R → F e∗R
produces an R-linear map

HomR(F
e
∗R,ωR) → HomR(R,ωR) = ωR.

Moreover, we have F e∗ωR
∼= HomR(F

e
∗R,ωR) (see [BST15, Example 2.4] for more details). Hence we have a

natural R-linear map:
ΦeR : F e∗ωR

∼= HomR(F
e
∗R,ωR) → HomR(R,ωR) = ωR

called the trace map of the e-th Frobenius.

Example 2.2. When R = k[x1, . . . , xn] is a polynomial ring over a perfect field k of characteristic p > 0,
we can identify ωR with R, and ΦeR can be identified with the usual trace TreR, that is:

TreR(F
e
∗ (x

i1
1 x

i2
2 · · ·xinn )) =







x
i1−(pe−1)

pe

1 x
i2−(pe−1)

pe

2 · · ·x
in−(pe−1)

pe

n , if it−(pe−1)
pe ∈ Z for each t

0, otherwise

In this case HomR(F
e
∗R,R) is a cyclic F e∗R-module generated by TreR. Furthermore, if f1, . . . , fc is a regular

sequence in R and T = R/(f1, . . . , fc), then we have ([Fed83, Corollary on page 465]1)

ΦeT (F
e
∗ (−)) = image of TreR(F

e
∗ (f

pe−1
1 · · · fp

e−1
c · −)) in T .

Remark 2.3. Let R = k[x1, . . . , xn] be a polynomial ring over a field k of characteristic p > 0 and A =
R[y1, . . . , ym] be a polynomial ring over R. For each ideal I in R, it is well known and straightforward to
check that

TreR(F
e
∗ (I))A = TreA(F

e
∗ (IA)).

Lemma 2.4. Let S → R be a surjection of Noetherian commutative rings of characteristic p. Assume that
both S and R admit canonical module ωS and ωR respectively and dimS = dimR. Then

ΦeR = ΦeS |ωR .

1Fedder’s result [Fed83, Corollary on page 465] assumes that the ring R is a Gorenstein local ring only to ensure that
HomR(F∗R,R) ∼= F∗R. In our case, R = k[x1, . . . , xn] is a polynomial ring, so HomR(F∗R,R) is clearly isomorphic to
F∗R. Hence Fedder’s result applies in our case.
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Proof. Under our assumptions, we have ωR = HomS(R,ωS) and the surjection S → R induces an inclusion
ωR = HomS(R,ωS) →֒ ωS . Consider the following diagram

HomR(F
e
∗R,HomS(R,ωS))

��

// HomR(R,HomS(R,ωS))
∼

//

��

HomS(R,ωS)

��

HomS(F
e
∗S, ωS) // HomS(S, ωS)

∼
// ωS

Note that the top row (resp. the bottom row) induces the trace map ΦeR (resp. ΦeS). To prove our lemma,
it suffices to prove

(a) the vertical map on the left is an inclusion, and
(b) the diagram commutes

To prove (a), note that the vertical map on the left can be refined further as

HomR(F
e
∗R,HomS(R,ωS)) = HomS(F

e
∗R,HomS(R,ωS))

→֒ HomS(F
e
∗S,HomS(R,ωS)) since F

e
∗S ։ F e∗R

→֒ HomS(F
e
∗S, ωS) since HomS(R,ωS) →֒ ωS

To prove (b), note that the commutativity follows directly from the commutativity of

S //

��

F e∗S

��

R // F e∗R

�

Definition 2.5 (cf. Definition 3.1 in [Har01] and Definition 2.33 in [BST15]). Let R be an F -finite Noe-
therian integral domain of characteristic p. The parameter test submodule τ(ωR) is the unique smallest
nonzero submodule M of ωR such that ΦR(F∗M) ⊆M . R is called F -rational if R is Cohen-Macaulay and
τ(ωR) = ωR. Note that this is not the original definition of F -rationality, but is known to be equivalent
[Smi97].

Definition 2.6 (cf. Definition 3.16 and Theorem 3.18 in [Sch11]). Let R be an F -finite Noetherian integral
domain of characteristic p. Let I ⊆ R be a nonzero ideal and t ∈ Q≥0. We define the test ideal τ(R, It),

abbreviated τ(It), to be the unique smallest nonzero ideal J ⊆ R such that φ(F e∗ (I
⌈t(pe−1)⌉J)) ⊆ J for all

e > 0 and all φ ∈ HomR(F
e
∗R,R).

Definition 2.7 (cf. Definitions 1.3 and 2.1 and Proposition 2.2 in [TW04]). Let R be an F -finite, local,
Noetherian, integral domain of characteristic p. Let I ⊂ R be an ideal and t ≥ 0 be a real number.

(1) The pair (R, It) is F -pure if for all large e ≫ 0, there exists an element d ∈ I⌊t(p
e−1)⌋ such that

(F e∗ d)R →֒ F e∗R splits as an R-module homomorphism.
(2) The pair (R, It) is strongly F -regular if for every c 6= 0 there exists e ≥ 0 and d ∈ I⌈tp

e⌉ such that
F e∗ (cd)R →֒ F e∗R splits as an R-module homomorphism.

(3) The F -pure threshold fptR(I) of (R, I) is sup{s ∈ R≥0| the pair (R, Is) is F -pure}, and when R is
strongly F -regular, we also have fptR(I) = sup{s ∈ R≥0| the pair (R, Is) is strongly F -regular}.

Remark 2.8. Note that when R is local, (R, It) is strongly F -regular if and only if τ(It) = R. Indeed,
suppose (R, It) is strongly F -regular. Pick a nonzero element c ∈ J and take e≫ 0 and d ∈ I⌈tp

e⌉ satisfying
the conditions of strong F -regularity for c, and let φ : F e∗R→ R be a map such that φ(F e∗ (cd)) = 1. Then

φ(F e∗ (I
⌈t(pe−1)⌉J)) ⊇ φ(F e∗ (I

⌈tpe⌉J)) = R,

and so τ(It) = R.
On the other hand, if τ(It) = R, 0 6= c ∈ R, and a ∈ I⌈t⌉, then there exists e ≥ 0 and φ : F e∗R → R such

that φ(F e∗ (I
⌈t(pe−1)⌉acR)) = R. Let b ∈ I⌈t(p

e−1)⌉ and f ∈ R such that φ(F e∗ (c(abf))) = 1. Then we are
done once we note that abf ∈ I⌈t⌉I⌈t(p

e−1)⌉ ⊆ I⌈tp
e⌉.
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We will need the following important description of test ideals:

Theorem 2.9 (cf. Proof of Theorem 3.18 in [Sch11]). With the notations as in Definition 2.6, for any
nonzero a ∈ τ(It), we have:

τ(It) =
∑

e≥0

∑

φ

φ(F e∗ (aI
⌈t(pe−1)⌉))

where the inner sum runs over all φ ∈ HomR(F
e
∗R,R).

Remark 2.10. With the notations as in Definition 2.6, the following holds ([BSTZ10, 3.3])

(2.10.1) τ(It) =
∑

e≥0

∑

φ∈HomR(F e
∗R,R)

φ(F e∗ (dI
⌈tpe⌉))

where d is a big test element (which is just a nonzero element in τ(R) = τ(R, I0)).
If R = k[x1, . . . , xn] is a polynomial ring over a perfect field k of characteristic p > 0, then one can set

d = 1 in (2.10.1) and HomR(F
e
∗R,R) is a cyclic F e∗R-module generated by TreR as discussed earlier. Hence

by (2.10.1),

τ(It) =
∑

e≥0

∑

φ∈HomR(F e
∗R,R)

φ(F e∗ (aI
⌈t(pe−1)⌉)) =

∑

e≥0

TreR(F
e
∗ (aI

⌈t(pe−1)⌉)), for any a ∈ τ(It)

=
∑

e≥0

∑

φ∈HomR(F e
∗R,R)

φ(F e∗ (I
⌈tpe⌉)) =

∑

e≥0

TreR(F
e
∗ (I

⌈tpe⌉))

Remark 2.11. With the notations as in Definition 2.5, one can show that if Ra′ is regular, then for every
sufficiently large power a of a′, τ(ωR) =

∑

e Φ
e
R(F

e
∗ (a · ωR)). This can be proved by a similar argument as

[ST12, Lemma 3.6, Lemma 3.8] so we omit the details.

The following result from [ST12] will also be used. These results were originally proved in [HY03] and
[HT04], and they hold as long as R is F -finite. We will only state the version of these results that we need.

Lemma 2.12 (cf. Theorem 6.9 in [ST12]). Let R be an integral domain essentially of finite type over a
perfect field of characteristic p > 0 and let I, J ⊆ R be nonzero ideals and t ∈ R≥0.

(1) If J is a reduction of I, then τ(It) = τ(J t).
(2) If J is generated by r elements, then τ(Jr) = Jτ(Jr−1).

We are ready to prove the characteristic p > 0 analogue of Ein’s Lemma in [Niu14]:

Lemma 2.13 (Ein’s Lemma in characteristic p > 0). Let R be an integral domain essentially of finite
type over a perfect field of characteristic p > 0 and let I ⊆ R be an equi-dimensional and unmixed ideal
of codimension c. If τ(Ic−1) = R, then τ(Ic) = I. In particular, if R is strongly F -regular and (R, Ic) is
F -pure, then τ(Ic) = I.

Proof. The lemma will follow from the following two inclusions:

(2.13.1) τ(Ic) ⊆ I.

(2.13.2) Iτ(It−1) ⊆ τ(It) for all t ≥ 1.

Indeed, if τ(Ic−1) = R, then I = Iτ(Ic−1) ⊆ τ(Ic) ⊆ I, and so we have equality throughout.

Proof of (2.13.1). Since inclusion is a local condition, we may assume that R is local with maximal ideal m.
By replacing R by R[x]mR[x], we may assume that R has infinite residue field: it is straightforward to check
that τ(Ic)R[x]mR[x] = τ((IR[x]mR[x])

c). Now let p be a minimal prime of I. Since I is equi-dimensional,
dimRp = c. Hence IRp has a reduction J ⊆ IRp generated by c elements. Therefore, since test ideals
localize,

τ(Ic)Rp = τ((IRp)
c) = τ(Jc) = Jτ(Jc−1) ⊆ J ⊆ IRp.

Since every associated prime of I is minimal, this inclusion holds for all associated primes of I, hence it holds
globally, i.e. τ(Ic) ⊆ I. �
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Proof of (2.13.2). This should be well known to experts in the field; we opt to provide a proof here since we
could not locate a proper reference. Let t ∈ R≥1, and pick 0 6= a ∈ τ(It). Then

Iτ(It−1) = I
∑

e≥0

∑

φ

φ
(

F e∗

(

aI⌈(t−1)(pe−1)⌉
))

=
∑

e≥0

∑

φ

φ
(

F e∗

(

aI [p
e]I⌈(t−1)(pe−1)⌉

))

⊆
∑

e≥0

∑

φ

φ
(

F e∗

(

aIp
e

I⌈(t−1)(pe−1)⌉
))

=
∑

e≥0

∑

φ

φ
(

F e∗

(

aIp
e+⌈(t−1)(pe−1)⌉

))

⊆
∑

e≥0

∑

φ

φ
(

F e∗

(

aI⌈t(p
e−1)⌉

))

= τ(It),

where the inner sum runs over all φ ∈ HomR(F
e
∗R,R) and the last inclusion following from the fact that

pe + ⌈(t− 1)(pe − 1)⌉ = ⌈pe + (t− 1)(pe − 1)⌉ = ⌈t(pe − 1) + 1⌉ > ⌈t(pe − 1)⌉. �

For the last statement, if (R, Ic) is F -pure, then the F -pure threshold of I is at least c. Since the F -pure
threshold is the supremum of those values t for which (R, It) is strongly F -regular when R is strongly F -
regular [TW04, Proposition 2.2], we have that (R, Ic−1) is strongly F -regular. This means that τ(Ic−1) = R
by Remark 2.8, and hence the first statement of the lemma tells us τ(Ic) = I. �

3. F -rationality under generic linkage

In this section, we investigate how F -singularities (e.g. F -purity, F -rationality, etc) behave under a
generic linkage. To this end, we will also consider the behaviors of test ideals under a generic linkage. We
begin with recalling the definition of a generic link.

Definition 3.1. Let R = k[x1, . . . , xn] be a polynomial ring over a perfect field of positive characteristic.
Let I be an equi-dimensional and unmixed ideal of R of height c. Fix a generating set {f1, . . . , fr} of I. Let
(uij), 1 ≤ i ≤ c, 1 ≤ j ≤ r, be a c × r matrix of variables. Consider c elements g1, . . . , gc in S = R[uij ]
defined by

gi := ui1f1 + ui2f2 + · · ·+ uirfr

for 1 ≤ i ≤ c. Then J = (g1, . . . , gc) : (IS) is called the first generic link of I with respect to {f1, . . . , fr}
(we also call S/J the generic link of R/I with respect to {f1, . . . , fr}).

Remark 3.2. It is well known that under the above assumptions, if I is reduced, then IS and J are geomet-
rically linked, i.e., IS = (g1, . . . , gc) : J and IS ∩ J = (g1, . . . , gc). Moreover, J is actually a prime ideal of
height c [HU85, 2.6].

The following theorem is our main technical result in this section.

Theorem 3.3. With the notation as in Definition 3.1, assuming I is reduced, we have

(1) τ(ωS/J) ⊆ τ(Ic) · (S/J);
(2) If I has a minimal reduction generated by at most c + 1 elements, then τ(ωS/J ) ⊇ τ(Ic) · (S/J);

hence τ(ωS/J) = τ(Ic) · (S/J) in this case.

Our proof of Theorem 3.3(2) requires considering different sets of generators of I. A priori, a generic link
(S, J) depends on the choice of generators. The following lemma guarantees that the statement in Theorem
3.3(2) is independent of the choice of generators of I. Its proof follows the same line as the proof of [HU87,
Proposition 2.11].

Lemma 3.4. Let Λ1 and Λ2 be two sets of generators of I and let (S1, J1) and (S2, J2) be generic links of
I with respect to Λ1 and Λ2 respectively. Then τ(ωS1/J1

) ⊇ τ(Ic) · (S1/J1) iff τ(ωS2/J2
) ⊇ τ(Ic) · (S2/J2).
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Proof. By considering Λ1 ∪ Λ2, we can assume that Λ1 ⊆ Λ2. By induction on the difference between the
cardinality of Λ1 and Λ2, we may assume that Λ2 has one more element than Λ1, i.e. we may assume that
Λ1 = {f1, . . . , fr} and Λ2 = Λ1 ∪ {fr+1}.

Denote the height of I by c. Let {uij | 1 ≤ i ≤ c, 1 ≤ j ≤ r + 1} be indeterminates over R. Set
S1 = R[uij ]1≤i≤c,1≤j≤r and S2 = R[uij ]1≤i≤c,1≤j≤r+1. For i = 1, . . . , c, set

gi := ui1f1 + · · ·+ uirfr

and
hi := ui1f1 + · · ·ui,r+1fr+1.

Then J1 = ((g1, . . . , gc) :S IS) is the first generic link of I with respect to Λ1 and J2 = ((h1, . . . , hc) :S2 IS2)
is the first generic link of I with respect to Λ2.

It is clear that S2 = S1[u1,r+1, . . . , uc,r+1]. Since fr+1 ∈ I, we must have that fr+1 =
∑r
j=1 ajfj for some

aj ∈ R. Let ϕ : S2 → S2 be the automorphism given by the linear change of variables

uij 7→ uij + ui,r+1aj

for 1 ≤ i ≤ c and 1 ≤ j ≤ r and
ui,r+1 7→ ui,r+1

for 1 ≤ i ≤ c.
We claim that ϕ(J1S2) = J2 and we reason as follows. For i = 1, . . . , c, we have that

ϕ(gi) =

r
∑

j=1

(uij + ui,r+1aj)fj =

r
∑

j=1

uijfj + ui,r+1

r
∑

j=1

ajfj =

r
∑

j=1

uijfj + ui,r+1fr+1 = hi.

Now since S1 →֒ S2 is a faithfully flat extension, we have that

J1S2 = ((g1, . . . , gc) :S1 IS1)S2 = ((g1, . . . , gc)S2 :S2 IS2),

and hence

ϕ(J1S2) = ϕ((g1, . . . , gc)S2 :S2 IS2) = (ϕ(g1, . . . , gc)S2 :S2 ϕ(IS2)) = ((h1, . . . , hc) :S2 IS2) = J2.

Let Sϕ2 denote the S1-algebra that is the same as S2 as a ring and whose S1-module structure is induced by

S1 →֒ S2
ϕ
−→ S2. Then we have shown that J1 ⊗S1 S

ϕ
2 = J2 and hence S1/J1 ⊗S1 S

ϕ
2 = S2/J2. Combining

Remarks 2.3 and 2.11, one can check that

τ(ωS1/J1
)⊗S1 S

ϕ
2 = τ(ωS1/J1

⊗S1 S
ϕ
2 )

where the right hand side is precisely τ(ωS2/J2
). Our lemma follows immediately since Sϕ2 is faithfully flat

over S1. �

The following lemma is also needed in the proof of Theorem 3.3.

Lemma 3.5. Let c, r be positive integers such that c = r or c = r − 1. Let β = (β1, . . . , βr) be an element
of Nr, where N is the set of non-negative integers. Assume

∑

i βi = c(pe − 1). Then there exist c elements
α1, ..., αc in Nr such that:

(1) each αi has at most two nonzero entries;
(2) the sum of the entries of each αi is p

e − 1;
(3) βj =

∑

i αij , where αi = (αi1, . . . , αir).

Proof. We will induce on r. If c = r = 1, then β = (pe − 1) and we let α1 = β. If c = 1, r = 2, we have
β = (β1, β2) where β1 + β2 = pe − 1 and we can let α1 = (β1, β2) and again (1)-(3) hold.

If c = r and β1 = · · · = βc = pe − 1, then we can set αi to be the vector with pe − 1 at i-th spot and 0
elsewhere. Otherwise, there must be a βi < pe − 1. Without loss of generality, we assume that βr < pe − 1.

We claim that βj ≥ pe − 1− βr for some j between 1 and r − 1, and we reason as follows. If c = r, then
there must be a j such that βj > pe − 1, and hence βj ≥ pe − 1− βr. Now assume that c = r − 1. Suppose
βi < pe − 1− βr for all i ≤ r − 1, as then we would have:

r
∑

i=1

βi < (r − 1)(pe − 1− βr) + βr ≤ (r − 2)(pe − 1− βr) + (pe − 1) ≤ (r − 1)(pe − 1) = c(pe − 1)
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which contradicts the assumption that
∑r
i=1 βi = c(pe − 1). So, there is a j between 1 and r − 1 such that

βj ≥ pe − 1− βr.
Set αc := (0, . . . , 0, pe − 1− βr, 0, . . . , βr) where p

e − 1− βr appears in the j-th spot. Consider

(β1, . . . , βj−1, βj − (pe − 1− βr), βj+1, . . . , βr−1).

This is an element of Nr−1 such that the sum of its entries is (c− 1)(pe − 1). By our induction hypotheses,
there are γ1, . . . , γc−1 ∈ Nr−1 that satisfy (1), (2), and (3). For 1 ≤ i ≤ c−1, setting αi be γi with a 0 added
to the end completes the proof of our lemma. �

Proof of Theorem 3.3. By Remark 3.2, J is a minimal prime of (g1, . . . , gc). Hence once we identify

ωS/J = HomS/(g1,...,gc)(S/J, S/(g1, . . . , gc)) = ((g1, . . . , gc) : J) · (S/J) = I · (S/J),

we know from Lemma 2.4 that

ΦeS/J(F
e
∗ (−)) = ΦeS/(g1,...,gc)(F

e
∗ (−))|ωS/J

= TreS(F
e
∗ (g

pe−1
1 · · · gp

e−1
c · −))|I·(S/J).

Next we notice that for every 1 ≤ k ≤ r, (S/J)fk
∼= Rfk [uij |j 6= k] is regular. Hence for N ≫ 0, fNk is a test

element for S/J . Thus by Remark 2.11, we have:

(3.5.1) τ(ωS/J) =
∑

e≥0

ΦeS/J(F
e
∗ (f

N
k · ωS/J)) =

∑

e≥0

TreS(F
e
∗ (g

pe−1
1 · · · gp

e−1
c · fNk · IS)) · (S/J)

Since fk ∈ I and R is regular, by Remark 2.10, for N ≫ 0 we also have:

τ(Ic) · (S/J) =
∑

e≥0

TreR(F
e
∗ ((f1, . . . , fr)

c(pe−1) · fNk ·R)) · (S/J)(3.5.2)

When we expand gp
e−1

1 · · · gp
e−1
c , it is easy to see from (3.5.1) that τ(ωS/J ) can be generated by elements of

the form

(3.5.3) TreS






F e∗







(

pe − 1

α11, . . . , α1r

)

· · ·

(

pe − 1

αc1, . . . , αcr

)

fβ1

1 fβ2

2 · · · fβr
r

∏

1≤i≤c

1≤j≤r

u
αij

ij · fNk · s ·
∏

1≤i≤c

1≤j≤r

u
γij
ij













where 0 ≤ αij ≤ pe − 1, βj =
∑c

i=1 αij ,
∑r

j=1 βj = c(pe − 1) and s ∈ I. By definition of the trace map, this
is equal to

∏

1≤i≤c

1≤j≤r

u
αij+γij−(pe−1)

pe

ij · TreR

(

F e∗

((

pe − 1

α11, . . . , α1r

)

· · ·

(

pe − 1

αc1, . . . , αcr

)

fβ1

1 fβ2

2 · · · fβr
r · fNk · s

))

where
αij+γij−(pe−1)

pe denotes 0 if αij + γij 6≡ −1 mod pe. But it is clear that this element is in τ(Ic) · S by

expression (3.5.2). This proves (1).

Next we prove (2). By Lemma 3.4 we can assume that Ĩ = (f1, . . . , fc+1) is a reduction of I (the case
that I has a reduction generated by c elements is similar). Hence by the arguments above, we have that, for
1 ≤ k ≤ c and N ≫ 0,

τ(Ic) · (S/J) = τ(Ĩc) · (S/J) =
∑

e≥0

TreR(F
e
∗ ((f1, . . . , fc+1)

c(pe−1) · fN+1
k ·R)) · (S/J)

Given a generator fβ1

1 · · · f
βc+1

c+1 of (f1, . . . , fc+1)
c(pe−1), we can find α1, . . . , αc ∈ Nc+1 satisfying the conclu-

sion of Lemma 3.5. Then
∏

1≤i≤c

1≤j≤c+1

(uijfj)
αij =

∏

1≤i≤c

1≤j≤c+1

u
αij

ij

∏

1≤j≤c+1

f
βj

j

appears with coefficient
(

pe−1
α11,...,α1,c+1

)

· · ·
(

pe−1
αc1,...,αc,c+1

)

in the product gp
e−1

1 · · · gp
e−1
c . Because each multino-

mial coefficient
(

pe−1
αi1,...,αi,c+1

)

=
(

pe−1
αiji

)

for some ji by Lemma 3.5 (1)-(2), they are nonzero in k.
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Each αij is less than pe, so let

s′ =







∏

1≤i≤c

1≤j≤c+1

u
pe−1−αij

ij













∏

1≤i≤c

c+2≤j≤r

up
e−1
ij






.

Then TreS(F
e
∗ (− · s′)) sends

∏

1≤l≤n x
pe−1
l

∏

1≤i≤c

1≤j≤c+1
u
αij

ij to 1 and all other basis elements to 0. Hence,

TreS(F
e
∗ (g

pe−1
1 · · · gp

e−1
c · fN+1

k · s′ ·R))

=TreS






F e∗







(

pe − 1

α11, . . . , α1,c+1

)

· · ·

(

pe − 1

αc1, . . . , αc,c+1

)

·
∏

1≤i≤c

1≤j≤r

up
e−1
ij

c+1
∏

j=1

f
βj

j · fN+1
k R













=TreR



F e∗





c+1
∏

j=1

f
βj

j · fN+1
k ·R







 .

In particular,

TreR



F e∗





c+1
∏

j=1

f
βj

j · fN+1
k · R







 · (S/J) = TreS(F
e
∗ (g

pe−1
1 · · · gp

e−1
c · fNk · fks

′R)) · (S/J) ⊆ τ(ωS/J)

for every generator
∏c+1
j=1 f

βj

j of (f1, . . . , fc+1)
c(pe−1), where the second inclusion follows from expression

(3.5.1). Therefore we have

τ(Ic) · (S/J) = τ(Ĩc) · (S/J)

=
∑

e≥0

TreR(F
e
∗ ((f1, . . . , fc+1)

c(pe−1) · fN+1
k · R)) · (S/J)

⊆ τ(ωS/J). �

Remark 3.6. The proof of Theorem 3.3 (2) requires the minimal reduction be generated by at most c + 1
elements. If not, then we are not in the case of Lemma 3.5 and it may be the case that there are always at least
three nonzero entries in some αi. Consequently, multinomial coefficients must be taken into consideration.

Corollary 3.7. With the notation as in Definition 3.1 and the assumptions as in Theorem 3.3 (2), τ(ωS/J) =
ωS/J if and only if τ(Ic) = I. In particular, S/J has F -rational singularities if and only if S/J is Cohen-
Macaulay and τ(Ic) = I.

Proof. If τ(Ic) = I, then Theorem 3.3 immediately implies τ(ωS/J) = ωS/J .
Conversely, assume that τ(Ic) 6= I and τ(ωS/J) = ωS/J . Since τ(I

c) is always contained in I by (2.13.1), at
least one of the generators of I is not in τ(Ic), say f1. From Theorem 3.3, we can see that τ(Ic)S+J = IS+J ;
hence f1 ∈ τ(Ic)S + J . Thus, there are elements a ∈ τ(Ic)S and b ∈ J such that f1 = a + b. (Note that
b 6= 0.) Then we have f1 − a ∈ J which implies that (f1 − a)f1 ∈ (g1, . . . , gc). However, this is impossible
because of the degrees in the uij . This is a contradiction.

The last assertion is clear because S/J is F -rational if and only if S/J is Cohen-Macaulay and τ(ωS/J) =
ωS/J . �

Corollary 3.8. With the notation as in Definition 3.1 and the assumptions as in Theorem 3.3 (2), if the
pair (R, Ic) is F -pure and R/I is Cohen-Macaulay, then S/J is F -rational. In particular, if R/I is an
F -pure complete intersection, then S/J is F -rational.

Proof. By Lemma 2.13, (R, Ic) is F -pure implies τ(Ic) = I. The first statement thus follows from Corollary
3.7. Finally, it is well known that when R/I is an F -pure complete intersection, the pair (R, Ic) is F -pure.
This follows from a Fedder type criterion ([Tak04, Lemma 3.9] and others). �

We can recover [Niu14, Corollary 3.4] in the complete intersection and almost complete intersection cases.
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Corollary 3.9. Let I = (f1, . . . , fr) be an ideal of C[x1, . . . , xn] and let c be the codimension of I. Let S
and J be in Definition 3.1. Assume that r ≤ c + 1. Then S/J has rational singularities if and only if S/J
is Cohen-Macaulay and I (Ic) = I, where I (Ic) is the multiplier ideal of Ic.

Proof. By [Smi97] and [Har98], S/J has rational singularities if and only if its reduction (S/J)p is F -rational
for all p ≫ 0. It is easy to see that, for p ≫ 0, the reduction Jp of J is a generic link of the reduction Ip of
I. Hence, S/J has rational singularities if and only if (S/J)p is Cohen-Macaulay and τ(Icp) = Ip for p ≫ 0
by Corollary 3.7. On the other hand, it was proved in [HY03] that I (Ic)p = τ(Icp) for all p≫ 0. Therefore,
we have S/J has rational singularities if and only if (S/J)p is Cohen-Macaulay and I (Ic)p = Ip for p≫ 0.
This completes the proof. �

4. Behavior of F -pure threshold under generic linkage

In this section we investigate behaviors of F -pure thresholds under generic linkages. We begin with an
easy lemma.

Lemma 4.1. Let R = k[x1, . . . , xn] be a polynomial ring over a perfect field of characteristic p and I be an
equi-dimensional and unmixed ideal of R. Let Λ1 and Λ2 be 2 sets of generators of I and let (Si, Ji) be the
generic link with respect to Λi (i=1,2). Then

fptS1
(J1) = fptS2

(J2).

Proof. As in the proof of Lemma 3.4, we can assume that Λ1 = {f1, . . . , fr} and Λ2 = {f1, . . . , fr, fr+1}.
Let ϕ and Sϕ2 be the same as in the proof of Lemma 3.4. It is straightforward to check that

τ(J t1)⊗S1 S
ϕ
2 = τ(J t2)

for each nonnegative real number t. Our lemma follows immediately. �

Remark 4.2. Let k ⊆ K be an extension of perfect fields and let R = k[x1, . . . , xn] and T = K[x1, . . . , xn].
Since HomR(R

1/pe , R) and HomT (T
1/pe , T ) are generated by the same projection, we have τR(I

t) = τT ((IT )
t)

(c.f. [BMS08, Remark 2.18]).

Theorem 4.3. Let R = k[x1, . . . , xn] be a polynomial ring over a perfect field of characteristic p and I be
an equi-dimensional and unmixed ideal of height c in R. Assume that I = (f1, . . . , fs) and that I has a

reduction Ĩ generated by r elements. Let S = R[uij ]1≤i≤c,1≤j≤s be a polynomial ring over R. For 1 ≤ i ≤ c,
let

gi = ui1f1 + ui2f2 + . . .+ uisfs.

Then fptS(g1, . . . , gc) ≥
c
r fptR(I).

Proof. By Lemma 4.1, we can add the generators of Ĩ to those of I and then assume that Ĩ = (f1, . . . , fr).

Since Ĩ is a reduction of I, it follows from [TW04, Proposition 2.2(6)] that fptR(I) = fptR(Ĩ). Hence it

suffices to show that τR(Ĩ
t) = R implies τS((g1, . . . , gc)

ct
r ) = S for any positive real number t < c. To this

end, assume that τR(Ĩ
t) = R. By Remark 4.2, we may assume that k is algebraically closed.

We wish to show that τS((g1, . . . , gc)
ct
r ) = S. Suppose otherwise and we seek a contradiction. There

is a maximal ideal m of S such that τS((g1, . . . , gc)
ct
r ) ⊆ m. Since k is algebraically closed, we can write

m = (x1 − a1, . . . , xn − an, u11 − b11, . . . , ucr − bcr) for some ai, bij ∈ k. Set n = (x1 − a1, . . . , xn − an).

Since τR(Ĩ
t) = R, there exist an integer e, an R-linear map φ ∈ HomR(R

1/pe , R), and nonnegative integers

α1, . . . , αr with
∑

i αi = ⌈tpe⌉ such that φ(f
α1/p

e

1 · · · f
αr/p

e

r ) /∈ n.
At this point we show that each fj ∈ n, and therefore αj ≤ pe − 1 for all j. Indeed, let e ≥ 1 such

that pe ≥ c/(c − t) and let ψ : S1/pe → S send the basis element u
(pe−1)/pe

1j u
(pe−1)/pe

2j · · ·u
(pe−1)/pe

cj to 1

and all other basis elements x
aℓ/p

e

ℓ u
bij/p

e

ij to 0. Now f cj g
pe−1
1 gp

e−1
2 · · · gp

e−1
c ∈ (g1, · · · , gc)

⌈(ct/r)pe⌉, because

(ct/r)pe ≤ tpe ≤ c(pe − 1). Therefore

f cj = ψ(f
c/pe

j u
(pe−1)/pe

1j u
(pe−1)/pe

2j · · ·u
(pe−1)/pe

cj f
c(pe−1)/pe

j )

= ψ(f
c/pe

j g
(pe−1)/pe

1 g
(pe−1)/pe

2 · · · g(p
e−1)/pe

c )

⊆ ψ(((g1, · · · , gc)
⌈(ct/r)pe⌉)1/p

e

) ⊆ m

9



by our choice of ψ and the assumption that τS((g1, . . . , gc)
ct
r ) ⊆ m. It follows that fj ∈ m ∩R = n.

Without loss of generality, we may assume that pe − 1 ≥ α1 ≥ α2 ≥ · · · ≥ αr. Consequently,

α1 + · · ·+ αc ≥
⌈ c

r
(α1 + · · ·+ αr)

⌉

=
⌈ c

r
⌈tpe⌉

⌉

≥
⌈ c

r
tpe

⌉

Let φα = φ(f
αc+1/p

e

c+1 · · · f
αr/p

e

r ·−), i.e. pre-multiplication by f
αc+1/p

e

c+1 · · · f
αr/p

e

r followed by the application

of φ. It is clear that φα : R1/pe → R is an R-linear map and that φα(f
α1/p

e

1 · · · f
αc/p

e

c ) /∈ n. We can extend

φα to an S-linear map ψα : R1/pe [uij ] → S = R[uij] that sends each uij to itself and restricts to φα on R1/pe .

It is clear that S1/pe = R1/pe [u
1/pe

ij ] is a free R1/pe [uij ]-module with a basis {
∏

0≤bij≤pe−1 u
bij/p

e

ij }. Let

πα : R1/pe [u
1/pe

ij ] → R1/pe [uij ] be the projection that sends u
α1/p

e

11 · · ·u
αc/p

e

cc to 1 and all other basis elements
to 0.

Let θα be the composition of S1/pe πα
−−→ R1/pe [uij ]

ψza
−−→ S. It is clear that θα is S-linear. By the

construction of πα, it is straightforward to check that

θa(g
α1/p

e

1 · · · gαc/p
e

c ) = θα((u11f1)
α1/p

e

· · · (uccfc)
αc/p

e

) = φ(f
α1/p

e

1 · · · fαr/p
e

r ).

Since φ(f
α1/p

e

1 · · · f
αr/p

e

r ) in R but not in n = (x1 − a1, . . . , xn − an), we must have

φ(f
α1/p

e

1 · · · fαr/p
e

r ) /∈ m = (x1 − a1, . . . , xn − an, u11 − b11, . . . , ucr − bcr),

a contradiction to the assumption that τS((g1, . . . , gc)
ct
r ) ⊆ m (note that gα1

1 · · · gαc
c ∈ (g1, . . . , gc)

⌈ ct
r p

e⌉). �

We have some immediate corollaries.

Corollary 4.4. Let R = k[x1, . . . , xn] be a polynomial ring over a perfect field of characteristic p and I be
an equi-dimensional and unmixed ideal of height c in R. Let J be a generic link of I in S = R[uij ]. The
following hold:

(1) If I has a reduction generated by r elements, then fptS(J) ≥
c
r fptR(I).

(2) If I has a reduction generated by c elements, in particular if I is a complete intersection, then
fptS(J) ≥ fptR(I).

(3) fptS(J) ≥
c
n fptR(I) (note n = dim(R)).

Proof. To prove (1), note that since (g1, . . . , gc) ⊆ J , we have fptS(J) ≥ fptS(g1, . . . , gc). Theorem 4.3 then
completes the proof.

(2) is an immediate consequence of (1).
(3) By Remark 4.2, passing to the algebraic closure of k doesn’t affect fptR(I) and fptS(J). Hence we

can assume that k is algebraically closed and hence is infinite. [Lyu86, Theorem] asserts that each ideal I
admits a reduction generated by n elements. We are done by (1). �
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