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Abstract: Due to the emissions of air pollutants, acid rain in southern China poses a great threat to
terrestrial ecosystems. However, its influences on ecological processes such as litter decomposition
and soil organic carbon (SOC) accumulation are still not clear. The aim of this study was to understand
the potential mechanisms of carbon sequestration change in response to long-term acid rain in
a subtropical forest. A field experiment with simulated acid rain (SAR) treatment was conducted
in a monsoon evergreen broadleaf forest in southern China. Four levels of SAR treatment were
implemented by irrigating the plots with water of different pH values (4.5 as a control, 4.0, 3.5,
and 3.0). The results showed that the concentration of SOC and recalcitrant index for the SAR
pH = 3.0 treatment were significantly higher compared to the control. Lignin fractions in litter residue
layers were significantly increased, while soil microbial biomass carbon and soil ligninolytic enzyme
activities were reduced under the SAR treatment. The concentration of SOC and recalcitrant index
had positive relationships with the litter residue lignin fraction, but negative relationships with soil
ligninolytic enzyme activity. These findings indicate that soil carbon accumulation could be enhanced
with more stable lignin input under prolonged acid rain in forest ecosystems in southern China.

Keywords: acid rain; 13C NMR; δ13C; lignin fraction; soil ligninolytic enzyme activities; soil organic carbon

1. Introduction

With the increase in anthropogenic activity in recent decades, such as coal combustion, industrial air
pollution, and automobile exhaust gases emissions, China has suffered from severe acid deposition,
especially in the southern regions [1,2]. More than 50% of storms now contain acid rain and
the annual average pH value of precipitation in southern China is generally below 4.5 [3,4].
Therefore, the prevalence of acid rain has increased public concern about the widespread impacts on
terrestrial ecosystems in southern China [5].
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Understanding the soil organic matter (SOM) dynamics in forest ecosystems is important because
soils are the largest pool of carbon (C) on Earth [6,7]. As a key ecological process responsible for
the transfer of organic matter from vegetation to soil, plant litter decomposition plays a critical role
in global C cycling [8–10]. Plant organic matter fixed by photosynthesis is eventually deposited in
soils, then decomposed and utilized by soil organisms, partially transformed into humic substances,
and contributed to the SOM [11]. On the basis of previous studies, prolonged acid rain would change
the quality and quantity of SOM into the soil, inhibits the decomposition of SOM, and alter the
sequestration of soil C [12–15].

Our previous study at this experimental site also showed that acid rain affects the conservation of
recalcitrant constituents [16]. However, the specific substances, relevant enzyme activities, and potential
mechanisms are still not well understood. The lignin fraction, which acts as the fundamental materials
for C sequestration, is often considered as a limiting factor of decomposition [17]. Since lignin is the
second most abundant component of vascular plant tissues after cellulose, there is a large amount of
lignin input into soil [18]. Lignin can react with other humic substances to form complexes that are
highly resistant to microbial degradation [19]. Therefore, on the one hand, increasing the formation
of the lignin fraction could increase soil organic carbon (SOC) stabilization [20]. On the other, since
most organic inputs to soil are polymeric, the decomposition of soil C depends on the microbial
production of extracellular enzymes that break down complex compounds into smaller products [18,21].
Soil oxidative enzymes (e.g., Ligninolytic enzymes, mainly phenol oxidase (PhOx) and peroxidase
(Perox)), a group of highly versatile enzymes, are known for their role in the degradation of complex
and recalcitrant compounds [22,23]. Hence, the activity of these enzymes greatly affects the changes in
the preservation of more recalcitrant organic matter. Consequently, an improved understanding of the
variation in the lignin fraction and soil ligninolytic enzymatic activities in response to prolonged acid
rain in a forest in southern China may provide insights into soil C preservation and stabilization in
tropical and subtropical forest ecosystems.

Over the past decades, discrimination of C isotopes during litter decomposition has been
employed as a powerful tool for better understanding C flows into terrestrial ecosystems [17,24,25].
13C contents may differ among plant organs and among specific organic compounds [26,27].
Thus, selective consumption by the decomposing microbial community could change the stable
C isotope ratios (δ13C) of organic matter, as compared with those of the original plant material [28].
McClaugherty and Berg (1987) [29] demonstrated that both cellulose and hemicelluloses are typically
enriched in 13C by 1–2% relative to whole-plant material, while lignin is depleted in 13C by 2–6%
relative to whole-plant material and by 4–7% relative to cellulose. It is suggested that lignin, because of
its greater recalcitrance, should accumulate with litter decomposition, thus leading to depletion of δ13C
in SOM relative to the starting litter inputs [30–32]. Osono et al. (2008) [17] also found that the increase
of lignin fraction is associated with a decrease in the δ13C of Swida controversa residue. Consequently,
the increase in lignin fractions and the relative increase of the residue in lignin-fraction-derived C
during decomposition are reflected by δ13C [33,34]. Therefore, understanding the changes in δ13C of
litter residues would be a critical step in deciphering the litter decomposition process and inferring the
variation in the lignin fraction. Solid-state 13C NMR spectroscopy is a powerful and rapidly developing
technique that has been increasingly applied in the study of litterfall, SOM, and decomposition in
recent years [35,36]. Several previous 13C NMR studies identified the chemical changes in litter and
other materials during decomposition and humification; they also provided useful information on
the relative decomposability of different C components of organic matter [37,38]. Utilization of these
two techniques could provide a better evaluation of litter residue chemical components such as lignin
under prolonged acid rain.

In previous work, we confirmed that more recalcitrant organic matter was generated under
prolonged simulated acid rain (SAR) treatment [16]. In this study, we hypothesized that: (1) SAR
would facilitate SOC accumulation and stabilization due to the input of more recalcitrant constituents,
such as the lignin fraction; and (2) it would reduce soil ligninolytic enzyme activities. The specific
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objectives of this study were (1) to determine how the SAR treatment impacts SOC concentration;
(2) to investigate the variations in litter residue lignin and soil ligninolytic enzyme activities under
the SAR treatment; (3) to identify whether soil organic carbon accumulation and stabilization are
associated with an increase in lignin fraction and a decrease in ligninolytic enzyme activities under the
SAR treatment.

2. Materials and Methods

2.1. Site Description

This study was carried out in Dinghushan National Nature Reserve, Guangdong Province,
China (112◦30′–112◦33′ E, 23◦09′–23◦11′ N). The reserve covers an area of 1155 ha and is located
in subtropical humid climate zone [39]. Mean annual temperature is 21 ◦C with the maximum and
minimum average monthly temperature of 28.0 ◦C in July and 12.6 ◦C in January, respectively. The mean
annual precipitation of 1927 mm follows a distinct seasonal pattern, with >80% of the rain falls in the
wet season from April to September and <20% in the dry season from October to March.

The experimental sites were set up in a monsoon evergreen broadleaf forest, the most mature
forest in this region of forest succession. The forest is located at about 250–300 m above sea level and
occupies approximately 600 ha. It has been protected from human impacts for more than 400 years [40].
Vegetation in the forest is typical of the south subtropical zone. The major species in this forest are
Castanopsis chinensis Hance, Schima superba Chardn Champ, Cryptocarya chinensis (Hance) Hemsl.,
Cryptocarya concinna Hance, Machilus chinensis (Champ. EX Benth.) Hemsl., Syzygium rehderianum
Merr. Perry in the overstory, and Calamus rhabdocladus Burret, Ardisia quinquegona Bl., and Hemigramma
decurrens (Hook.) Copel. in the understory. Tree heights range from 4 to 30 m and stem diameters
range from 5 to 163 cm. The soil is classified as lateritic red earth, loamy in texture, and acidic [41].
Acid rain is a threat in this area with an annual average rainfall pH < 4.90 [3].

2.2. Experimental Treatments

The SAR experiment was initiated in June 2009. The SAR treatments were implemented by
irrigating plots with water of different pH values: CK (the control, local lake water, pH ≈ 4.5),
T1 (pH = 4.0), T2 (pH = 3.5), T3 (pH = 3.0). Twelve plots were established and randomly assigned into
four SAR treatments, three replications for each treatment were used. Each plot was 10 × 10 m2 and
surrounded by a 3-m buffer strip. The SAR solutions were prepared by mixing the local lake water
with H2SO4 and HNO3 in a 1:1 mole ratio to reflect actual environmental conditions based on previous
acid rain records. Additionally, the SAR solutions were applied to each plot below the canopy using
a gasoline engine sprayer; the amount applied to each plot was 40 L per application. More details on
the experimental design and methods can be found in Liang et al. (2013) [42] and Wu et al. (2016) [16].

2.3. Sample Collection and Analyses

Litter residue samples (15 cores; core diameter 20 cm), which were divided into litter (L),
fermentation (F), and humified (H) layers, were taken randomly and combined to give one composite
sample of each layer per plot in September 2016. The L layer was consisted as the initial stage, the F layer
as the intermediate stage, and the H layer as the final stage of litter decomposition [43]. Thickness of
the litter residue ranged from 3 to 5 cm. The L layer consisted of fresh or slightly decomposed litter
from trees and the understory (0.5–2 cm). The F layer consisted of partly decomposed litter that was
still identifiable (2–3 cm). The H layer consisted of decomposed organic matter that could not be
identified (0.5 cm). A total of 36 (3 × 12) samples were collected in this study. These litter residue
samples were cleaned and then oven-dried at 65 ◦C for 24 h for further analysis. The litter residue
samples for total organic C, lignin concentration, solid-state 13C NMR, and stable C isotope analyses
were further ground to pass through a 0.25-mm sieve.
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Soil samples were collected from 0–10 cm, using a standard soil sampling tube (with an inside
diameter of 2.5 cm). From each plot, we selected five cores randomly and mixed them into one sample,
and a total of 12 samples were collected in this study. The fresh soil samples were passed through
a 2-mm sieve to remove rocks and plant roots. Then, each sub-sample was divided into two parts.
One part was stored at 4 ◦C for the soil microbial biomass carbon (SMBC) and soil enzyme activity
analyses. The other part was air-dried and ground to pass through a 0.25-mm sieve for the SOC
concentration and solid-state NMR analyses. The SOC concentration was determined using the
Walkley-Black’s wet combustion method [44].

The concentration of lignin fractions in the litter residue samples was estimated by gravimetry
according to King and Heath (1967) [45], using hot sulfuric acid digestion. Briefly, each sample
was treated with 72% sulfuric acid (v/v), diluted with distilled water to make a 2.5% sulfuric acid
solution, and autoclaved at 120 ◦C for 60 min. After cooling, the residue was filtered, dried at 105 ◦C,
and weighed as an acid-insoluble lignin residue. Although the acid-insoluble residue contains both
true lignin and lignin-like materials produced during the decomposition processes, this acid-insoluble
lignin fraction was considered to be a ‘lignin’ fraction for the sake of simplicity in this study.

The SOC concentration, total C contents of litter residues (Total C), and lignin fraction C content
(Lignin C) of the subsamples from the three decomposition layers were measured by dry combustion
on a vario ISOTOPE cube elemental analyzer (Elementar, Germany). The δ13C of litter residues in
different decomposition layers were analyzed on an IsoPrime 100 isotope ratio mass spectrometer
(Elementar, Germany). The carbon isotope ratio is expressed relative to the Pee Dee Belemnite (PDB)
standard. The results were calculated as delta carbon-13 values (δ13C) on a per mil basis (%�) according
to the following formula:

δ13C = [(13C/12C sample) − (13C/12C standard)]/(13C/12C standard) ∗ 1000 (1)

The carbon functional groups in the litter residue samples from the three decomposition layers
and the 0–10 cm soil layer were analyzed using cross-polarization magic-angle-spinning (CPMAS)
solid-state NMR spectroscopy (Bruker AscendTM 300 WB, Rheistetten, Germany). The soil samples
were pretreated with hydrofluoric acid (HF, 10% v/v) to remove Fe3+ and Mn2+ from the soil and
thus increase signal-to-noise ratio of instrument [46]. 7 mm diameter sample tubes were used with
parameters set at a frequency of 75.5 MHz, MAS spinning frequency at 12 kHz; 2000 transients were
collected for each sample, with a contact time of 35 ms, and a recycle time of 5 s [46]. The external
standard used for chemical shift determination was adamantane.

The 13C NMR spectra were divided into four regions representing the different chemical
environments of a 13C nucleus [18,47]: alkyl C (0–50 ppm), including side chains of amino acids,
alicyclic-C in resin acids and structures derived from cutins and suberins; O-alkyl C (50–110 ppm),
including oxygen-substituted C in alcohols, ethers, cellulose, hemicelluloses, and other polysaccharides;
aromatic C (110–160 ppm), including condensed tannins, hydrolysable tannins and lignin; and carbonyl
C (160–200 ppm), including secondary amide-C in proteins, carboxylic-C in hydrolysable tannins,
carboxylic-C in resin acids, and carbonyl-C in lignin and carboxyl-C in hemicelluloses. The relative
area of these chemical shift regions was calculated for each spectrum as the percentage of total area by
integration using the MestReNova software package (Version 5.3.1, MestReNova, Mestrelab Research,
Spain). The ratio of alkyl C to O- alkyl C (A/O-A ratio) is a useful index for the extent of litter
decomposition [48]. The recalcitrance index ((alkyl C + aromatic C)/(O-alkyl C + carbonyl C)) is another
indicator of organic matter stability [49].

The SMBC was determined by subjecting fresh soil samples to the chloroform fumigation-extraction
method [50]. We quantified the potential activities of two soil oxidative enzymes PhOx and Perox,
following the method described by Iyyemperumal and Shi (2008) [51], and using L-3, 4- dihydroxy
phenylalanine (L-DOPA) as the substrate. For the PhOx activity, 1 g of soil was mixed with 4.5 mL
of modified universal buffer at pH 5.0 and 4.5 mL 0.01 M L-DOPA. The mixture was then rapidly
mixed and incubated for 1 h at 25 ◦C. After that, it was immediately centrifuged at 12,000× g at 5 ◦C
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Figure 3. The 13C cross-polarization magic-angle-spinning (CPMAS) NMR spectra of litter residues
at different layers (L, litter layer; F, fermentation layer; and H, humified layer) as decomposition
proceeded. Examples are shown for CK = control treatment, T1 = pH 4.0 treatment, T2 = pH 3.5
treatment, and T3 = pH 3.0 treatments. Superscripts indicate the peaks’ chemical shift.

Table 3. Effects of simulated acid rain (SAR) treatment and litter residue decomposition layer on the
integrated intensity of major 13C cross-polarization magic-angle-spinning (CPMAS) NMR spectral
regions and the ratio of alkyl C to O- alkyl C (A/O-A ratio).

E Alkyl C O-alkyl C Aromatic C Carbonyl C A/O-A Ratio

Layer L 19.90 ± 2.48C 72.06 ± 2.97A 2.58 ± 0.48B 5.47 ± 0.87B 0.28 ± 0.05C
F 23.93 ± 2.60B 65.80 ± 3.54B 4.76 ± 1.39A 5.52 ± 1.06B 0.37 ± 0.06B
H 29.64 ± 2.79A 57.13 ± 3.52C 5.37 ± 1.10A 7.86 ± 1.20A 0.52 ± 0.08A

Treatment CK 22.63 ± 3.35b 67.77 ± 5.60a 3.28 ± 1.07b 6.32 ± 1.63 0.34 ± 0.08b
T1 23.61 ± 4.50b 65.73 ± 6.42ab 4.19 ± 1.40a 6.47 ± 1.44 0.37 ± 0.11b
T2 25.22 ± 5.03ab 64.09 ± 7.28b 4.67 ± 1.98a 6.02 ± 1.64 0.40 ± 0.12ab
T3 26.48 ± 5.81a 62.40 ± 8.45b 4.80 ± 1.59a 6.31 ± 1.61 0.44 ± 0.15a

Analysis of variance (P value)
Layer <0.001 <0.001 <0.001 <0.001 <0.001

Treatment <0.01 <0.01 <0.01 0.86 <0.001
Layer × Treatment 0.134 0.179 0.111 0.385 <0.05

L, litter layer; F, fermentation layer; and H, humified layer. CK, control treatment; T1, pH = 4.0 treatment;
T2, pH = 3.5 treatment; and T3, pH = 3.0 treatment. Values are means ± SD. Different superscript letters in the
column indicate significant differences among litter residue decomposition layers (uppercase letters) and differences
among SAR treatments (lowercase letters) at P < 0.05.
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3.5. Soil Microbial Biomass Carbon and Ligninolytic Enzyme Activities

The SMBC concentration was significantly affected by the SAR treatment in the topsoil (P < 0.05,
Figure 4A). The SMBC in the T2 and T3 treatments were significantly lower (24.8 and 33.2%, respectively)
than those in the control. The SAR treatment significantly influenced PhOx and Perox activities (P < 0.05,
Figure 4). The mean soil enzyme activities of the CK treatment were 0.74± 0.18 and 0.52± 0.04 µmol g−1

dry soil h−1 for the PhOx and Perox, respectively. For the PhOx, the activity was significantly reduced
as pH value decreased (P < 0.05). The activity of Perox in the T3 treatment was decreased by 31.4%
compared to the CK treatment. Using regression analysis, we found that the SOC content and
recalcitrance index had a negative relationship with ligninolytic enzyme activities (P < 0.05). The SOC
content and recalcitrance index increased linearly with decreasing ligninolytic enzyme activities
(Figure 1c,d).
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Figure 4. Soil microbial biomass carbon (SMBC, A) and ligninolytic enzyme activities (B,C) under the
effect of the acid rain treatments. CK is control treatment, pH ≈ 4.5; T1 is the pH = 4.0 treatment; T2 is
the pH = 3.5 treatment; and T3 is the pH = 3.0 treatment. PhOx denotes phenol oxidase and Perox
denotes peroxidase. Different superscript letters indicate significant differences among acid treatments
at P < 0.05. Values are means ± SD.

4. Discussion

4.1. Effect of SAR on the Lignin Fraction

Two lines of evidence showed that the lignin fraction increased significantly as decomposition
proceeded (i.e., from the L to F and H layers) (Table 1). (1) The decrease in δ13C of the litter residue
was greater in the lower layer (H) where the concentration of the lignin fraction was higher than in
the upper layers (L and F). The significant negative correlations between δ13C and the ratio of Lignin
C/Total C of the litter residue within the decomposition layers (Figure 2) suggested that the variation of
lignin in the litter residue can be reflected by 13C isotope dynamics in this ecosystem [52]. (2) 13C NMR
analysis showed that alkyl C and aromatic C increased significantly as the decomposition proceeded,
resulting in the increase of lignin compounds in the late stages of decay. Similar results were reported
in previous studies [17,32,34,53]. The significant differences in the lignin fractions in the different
decomposition layers might be related to fast mass loss of leaf litter through leaching during the early
stage of decomposition. Nearly 50% of leaf litter is composed of labile, water-soluble constituents
such as carbohydrates [54]. Loss of carbohydrates from the leaf litter structure explains the large
loss in mass in the upper layers of litter decomposition. Since the most easily leached constituents
(e.g., soluble carbohydrates) are more enriched in 13C than recalcitrant constituents (e.g., lignin) [30,53],
the remaining litter would be lower in δ13C. After the initial leaching stage moving from the L to the
F and H layers, the mass loss rate is reduced as easily degradable constituents are exhausted and
decomposition is limited by an increase of phenolic compounds in the H layer [55].

One interesting finding of this study was that, under the SAR treatment, the δ13C showed a trend
of decline as the pH value decreased (Table 2). Since a more recalcitrant lignin fraction is 13C- depleted
compared to the less refractory C fractions and bulk leaf litter [30], the relative increase of lignin might
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be reflected by more negative δ13C in the litter residue [52]. More specific chemical and spectroscopic
analyses using 13C NMR analysis suggested that the O-alkyl C resonance region, which is dominated
by peaks related to carbohydrate structures, decreased significantly under the SAR treatment (Table 2).
On the contrary, the alkyl C and aromatic C fractions, which represent more recalcitrant compounds
such as resins and lignin, increased under the SAR treatment. One possible reason for the increase of
lignin under the SAR treatment is that prolonged acid rain aggravates the soil acidification, and lower
soil pH can change the population and biological activity of soil decomposers due to the toxicity of
high H+ loads [56]. In this study, we did find that the microbial biomass decreased as the low pH
treatment had a significant lower SMBC concentration (Figure 4A). Our previous studies [16,42] and
other SAR experiments [14,57] showed that increasing acid rain inputs proportionally restrain the
activities of microorganism, and lead to a marked loss of microbial biomass.

4.2. Effect of SAR on Soil Ligninolytic Enzymatic Activity

Ligninolytic enzymes play an important role in the degradation of recalcitrant compounds, so the
change in enzymatic activity would greatly influence C cycling [22,58], and directly affect the changes
in the preservation of more stable organic C in forest soil. In this study, the SAR treatment reduced soil
microbial biomass and decreased the associated enzyme activities by restraining the rates of synthesis
and the release of exoenzymes by soil microorganisms (Figure 4) [59,60]. The enzymatic potential
for oxidizing the recalcitrant fractions of soil organic material is strongly related to soil pH, and as
a result, the oxidative enzyme activities are restrained by low soil pH [61]. We also found that the SOC
concentration and recalcitrant index were negatively correlated with ligninolytic enzyme activities
under the SAR treatment (Figure 1c,d), and the relatively stable compounds might be preserved and
resistant to further microbial decomposition [62].

4.3. Effect of SAR on Soil Organic Carbon

We hypothesized that soil organic C would be higher under prolonged acid rain in the forest soil.
The results in our study, indeed, showed an increasing trend as regards SOC concentration in response
to long-term acid rain. Under the SAR treatment, SOC also became more stable as the lower pH
treatment had a significantly increased soil recalcitrant index (Table 1). These results are in accordance
with our and other previous studies [12,16,57,63], which reported that soil organic carbon accumulates
as a long-term consequence of continued acid rain. Different mechanisms may help explain soil C
accumulation and stabilization in response to prolonged acid rain such as more C input from litterfall
and roots, more stable C preserved in the soil, and less was utilized by micro-organisms under the
SAR treatment. As acid rain might not enhance the C inputs, we focused more on the changes in
the lignin fraction and soil ligninolytic enzymatic activities. On the basis of our results, we believe
that prolonged acid rain decreased the ligninolytic enzymatic activities, retained more lignin fraction
carbon, and resulted in a higher SOC in the soil.

5. Conclusions

After more than seven years of the SAR treatment in a subtropical forest in southern China,
we found a significant increase in the soil organic carbon concentration and recalcitrant index under
heavy SAR treatment. Using the 13C isotope and the solid-state 13C NMR techniques, we showed that
the lignin fraction in the later decomposition layer significantly increased as the pH value decreased.
The reduced activities of soil ligninolytic enzymes under the SAR treatment contributed to the increases
in the lignin fraction, the recalcitrant index, and the SOC concentration. The information generated
in our study indicates that prolonged acid rain facilitates SOC stabilization and accumulation in
subtropical forest. However, acid rain is widely considered to be a serious environmental problem,
and the increasing soil acidification poses a serious threat to terrestrial ecosystems. While prolonged
acid rain might mitigate a fraction of potential carbon emissions, the results from this study should not
be viewed as an endorsement for soil acidification in terrestrial ecosystems.
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