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THE s-MULTIPLICITY FUNCTION OF 2 × 2-DETERMINANTAL RINGS

LANCE EDWARD MILLER AND WILLIAM D. TAYLOR

Abstract. This article generalizes joint work of the first author and I. Swanson to the s-multiplicity recently
introduced by the second author. For k a field and X = [xi,j] a m × n-matrix of variables, we utilize Gröbner bases

to give a closed form the length λ(k[X]/(I2(X)+m
⌈sq⌉
+m

[q]
)) where s ∈ Z[p−1], q is a sufficiently large power of p,

and m is the homogeneous maximal ideal of k[X]. This shows this length is always eventually a polynomial function
of q for all s.

1. Introduction

One of the most well studied and intriguing invariants for positive characteristic commutative algebra is the
Hilbert-Kunz multiplicity. Specifically in a local ring (R,m, k), where k has positive characteristic, the length

λ(R/m[q]) = eHK(R)q
d +O(qd−1) as was first shown by P. Monsky [Mon83] building on work of E. Kunz. Much

subtly lies in the lower order terms. When R is excellent, normal, and with perfect residue field, there is a sharper
form λ(R/m[q]) = eHK(R)q

d + βqd−1 +O(qd−2) [HMM04]. However, in contrast to the Hilbert-Samuel function, one
cannot expect this length to be polynomial in q, even for nice rings in small dimensions. Despite its complication,
the first author and I. Swanson showed that this length function is a polynomial in q for R the determinantal ring
defined by 2-minors [MS13]. The techniques there in are combinatorial in nature, building on work of K. Eto and
K.-i. Yoshida [EY03], and were pushed later on by I. Swanson and M. Robinson to give a closed form as a sum of
products of binomial coefficients, yielding a complete understanding of the Hilbert-Kunz function of such rings.

Recently, the second author introduced a type of interpolation between Hilbert-Samuel and Hilbert-Kunz multi-
plicities. Specifically for s a positive real number, the s-multiplicities es(R) form a continuous family of real numbers
agreeing with the Hilbert-Samuel multiplicity e(R) for small values of s and agreeing with the Hilbert-Kunz multi-

plicity eHK(R) for large values of s. These arise as suitable normalizations of the limit limq→∞ q
−dλ(R/(m⌈sq⌉+m[q])).

which is known to exist [Tay]. This family offers an important hope to deform results from one multiplicity to an-
other. Standing in the way are the multiplicities es(R)which agree with neither the Hilbert-Samuel nor Hilbert-Kunz
multiplicities, and so far these intermediate values are not well understood.

Fixing s ∈ Z[p−1], for small values of s, the length λ(R/(m⌈sq⌉ +m[q])) is eventually a polynomial in q and for
large values of s the length can be significantly more complicated. However, when R is the determinantal ring
defined by 2-minors, this length function is eventually a polynomial in q for large values of s too. The purpose of
this short article is show in such case, this length function is eventually a polynomial in q for all such s and to give
a closed form for it similar to [RS15]. The final form of this is our main theorem, which is a sum of products of
binomials and involves the monus operator, denoted q and defined by a q

b = max{a − b,0}. In this theorem and
throught the paper, unrestriced sums are interpreted as being over all integers.

Theorem (Theorem 3.9). Fix k a field, p an integer and q a p-power. Let X be an m × n-matrix of variables, m

the homogeneous maximal ideal of k[X] and I2(X) the ideal of 2 × 2-minors. Let s ∈R>0 such that sq ∈ Z, and set

R(m,n, s, q) ∶=∑
a

∑
b

∑
ℓ

(
m − 1

a
)(
n − 1

b
)(

sq + ℓ

a + b + 1
)(
a

ℓ
)(
b

ℓ
)

S(m,n, s, q) ∶=∑
i>0
∑
j>0
∑
a

∑
b

∑
ℓ

(−1)i+j(
m

i
)(
n

j
)(
(j q

i)q +m − 1

m − 1 − a
)(
(i q

j)q + n − 1

n − 1 − b
)(
(s −max{i, j})q + ℓ

a + b + 1
)(
a

ℓ
)(
b

ℓ
).

The length λ( k[X]
m
⌈sq⌉+m[q]+I2(X)

) = R(m,n, s, q) − S(m,n, s, q). Notably, this is a polynomial in q.

Acknowledgments: We thank P. Mantero and M. Johnson for helpful discussions and D. Juda for suggesting
the technique used in one of the proofs of Lemma 3.3. We deeply thank the referee for the careful and detailed
review of the manuscript, which allowed us to improve it significantly.
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2. Preliminaries

Unless otherwise stated, p always denotes a positive prime integer, q a power of p, and k a field of characteristic
p. Throughout s is a positive real number and λ denotes length of a module. The s-multiplicity, introduced in [Tay],
is defined as follows. Fix a local ring (R,m) of characteristic p and two m-primary ideals I and J , the following
limit [Tay, Thm. 2.1] exists,

hs(I, J) ∶= lim
e→∞

λ(R/I⌈sp
e⌉ + J [p

e])/ped.

For small values of s, hs(I, J) =
sd

d!
e(I) whereas for large values of s, hs(I, J) = eHK(J). When R is regular of

dimension d, Hs(d) ∶= hs(m,m) = ∑
⌊s⌋
i=0

(−1)i

d!
(d
i
)(s − i)d offers a normalizing factor and one defines the s-multiplicity

by es(I, J) ∶= hs(I, J)/Hs(d). We follow the usual conventions denoting es(R) ∶= es(m,m) and similarly for hs.
This article concerns the s-length functions hs(R) where R is the quotient of a polynomial ring with defining

ideal the 2 × 2-minors of a matrix of variables. The techniques follow similarly to [MS13, RS15]. We first recall
notation.

Definition 2.1. We call a monomial∏i,j x
pi,j

i,j a staircase monomial if whenever i < i′ and j < j′, then pi,jpi′,j′ = 0.

A staircase monomial is called a stair monomial if there exist c ∈ {1, . . . ,m} and d ∈ {1, . . . , n} such that pl,k = 0
whenever (l − c)(k − d) /= 0. Thus the indices (i, j) for which pi,j /= 0 all lie in the union of part of row c with part
of column d, either in a ⌜ or a ⌟ configuration. A stair monomial is called a q-stair monomial if for such c, d,

∑k pc,k = q = ∑k pk,d.

Remark 2.2. Notice that monomials p in k[X] may be identified with integer valued m × n-matrices by writing
p = ∏x

pi,j

i,j and associating p to (pi,j). We call this its exponent matrix. Staircase monomials ∏i,j x
pi,j

i,j are so

called as the indices (i, j) for which pi,j /= 0 lie on a southwest-northeast staircase type pattern, i.e., their exponent
matrices have support in a pattern like the following

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

● ● ●
●

● ● ●
●

● ● ● ●

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Under this identification, the multiplicative semigroup of monomials is identified with the additive semigroup
of non-negative integer valued matrices. We tacitly use this identification to keep the notation in the proofs to a
minimum.

We start with an elementary lemma about staircase monomials implicit in the work [MS13, RS15].

Lemma 2.3. Let X be a generic m × n-matrix.

(1) Any monomial in k[X] is equivalent to a staircase monomial modulo I2(X).
(2) If p is a monomial and q is a staircase monomial with p ≡ q mod I2(X), then p has the same degree, row,

and column sums as q.

Proof. Let p be a monomial in k[X], identified with its exponent matrix (pi,j). The key mechanic at work here is
that when a < b and c < d, modulo the minor xa,cxb,d − xa,dxb,c, the monomial p is equivalent to the monomial p′

with exponent matrix (p′i,j) where

p′i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pi,j (i, j) ≠ (a, c), (b, d), (b, c), (a, d)

pa,c + 1 (i, j) = (a, c)

pb,d + 1 (i, j) = (b, d)

pa,d − 1 (i, j) = (a, d)

pb,c − 1 (i, j) = (b, c)

From this the second claim is immediate as modifying monomials using these determinants clearly preserves all
listed characteristics.

To prove the first claim, a simple induction on the number of columns allows us to assume that any monomial in
correspondence to the augmentedm×n-matrix [(pi,j)1≤j≤n−1 ∣0] is equivalent modulo I2(X) to a staircase monomial,
that is modulo I2(X) we may assume p has the staircase shape for the first n− 1 columns. Set i to be the smallest
row index so that pi,n−1 ≠ 0. We now induce on the row indicies i′ such that i ≤ i′ and pi′,n ≠ 0. If there are none or
if the only one is i′ = i, then p is a already staircase monomial. Otherwise, assume by induction that p is equivalent
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modulo minors to a staircase monomial in the support of the last column of exponent matrix is in rows 1 through
i′ − 1 and that pi′,n ≠ 0

If pi′,j = 0 for all j, then up to a multiple of the minor xi,n−1xi′,n − xi′,n−1xi,n, p is equivalent to a monomial
with pi,n−1pi′,n = 0 and the rest follows by induction. Otherwise, we may set j to be the largest column index for
which pi′,j ≠ 0. If the value pi′,n is larger than ∑ pk,ℓ where i ≤ k ≤ i′, j ≤ ℓ ≤ n but (k, ℓ) ≠ (i′, n), then using
appropriate minors, one may assume that p is equivalent to a monomial with the same support as p outside of the
ranges i ≤ k ≤ i′ and j ≤ ℓ ≤ n but where pk,ℓ = 0 for i ≤ k ≤ i′ and j ≤ ℓ ≤ n unless either k = i′ or j = n, i.e., is a
staircase monomial. If ∑pk,ℓ is smaller than pi′,n, then again we may use minors to reduce p modulo I2(X) to a
monomial which is staircase up to the last column but for which pi′,n = 0 and the rest follows by induction. �

Theorem 2.4. Fix X a generic m×n-matrix and m the homogeneous maximal ideal in k[X]. For I an m-primary

monomial ideal in k[X], the set of staircase monomials not in I forms a k-basis for k[X]/(I2(X)+ I).

Proof. It suffices to show the claim for I = m
t for fixed t as the theorem follows by noting that when I is m-

primary, mt ⊂ I for some power t and a k-basis for k[X]/(I2(X) + I) is obtained by eliminating from a k-basis of
k[X]/(I2(X) +m

t) the elements which lie in I.
Set T ⊂ k[X] the ideal generated by all staircase monomials of degree t. Following the proof of [MS13, Thm. 2.4],

the theorem follows immediately once we’ve show that G = I2(X)+T ⊂ I2(X)+m
t is a Gröbner basis. The equality

I2(X) + T = I2(X)+m
t follows by the first claim of Lemma 2.3. To finish the proof, one needs only check, via the

Buchberger algorithm, that S-polynomials S(f, g) for any generators f and g of I2(X) + T . This is immediately
trivial unless f is a determinant, g is a staircase monomial, and their leading terms share a variable in common.
The rest of the check is straightforward and follows by repeating the same case by case analysis as in the proof of
[MS13, Thm. 2.2]. �

Remark 2.5. In the special case that I = m[q] one notes that the basis guaranteed by Theorem 2.4 agrees with
base guaranteed by [MS13, Thm. 2.2] as the set of staircase monomials which are not in I are precisely those not
divisible by any q-stair monomials.

Corollary 2.6. Fix X a generic m × n-matrix and m the homogeneous maximal ideal in k[X]. For any positive

integer s, a k-basis for m
⌈sq⌉ +m[q] + I2(X) consists of staircase monomials of degree at most ⌈sq⌉ and having either

all row sums smaller than q or all column sums column sums smaller than q.

It now suffices for us to turn our attention at carefully counting the k-basis ofm⌈sq⌉+m[q]+I2(X). The computation

of λ( k[X]
m
⌈sq⌉+m[q]+I2(X)

) follows an expected combinatorial argument. Following the techniques in [RS15], we explain

how to give a precise enough monomial count.
In the rest of the paper we will be operating under the assumptions that s ∈ Z[p−1] and q is large enough that

sq ∈ Z. We do this because we are primarily interested in establishing that the length function is polynomial in q.
It is unreasonable to expect such behavior for s ∉ Z[p−1]. As a simple example, consider the ring R = F2[x, y] and
let m = (x, y) and s = 4

3
. For any e ∈N, we have that

⌈spe⌉ = ⌈
2e+2

3
⌉ =

⎧⎪⎪
⎨
⎪⎪⎩

2
e+2+1
3

if e is odd
2
e+2+2
3

if e is even.

From this we can easily compute the length function in question:

λ(R/m⌈sp
e⌉ +m[p

e]) =

⎧⎪⎪
⎨
⎪⎪⎩

7

9
p2e + 5

9
pe − 2

9
if e > 0 is odd

7

9
p2e + 7

9
pe − 5

9
if e > 0 is even.

This example shows that even in the simplest cases, we cannot expect the length function to be equal to a single
polynomial when s ∉ Z[p−1].

3. Combinatorics

We utilize the convention that (m
n
) = 0 if n < 0, m < n, or m < 0. Unspecified summations are over all integers.

We are interested in counting staircase monomials with restricted row and column sums. Using [RS15, Lem.
2.4], it suffices to count (m + n)-tuples (x1, . . . , xm, y1, . . . , yn) ∈ Z

m+n
≥0 , where we interpret the xi’s as row sums

and yj’s as column sums of the associated exponent matrix to the staircase monomial. This forces the condition

∑i xi = ∑j yj and the lemma, loc. cit., gives a bijection between such tuples and staircase monomials. Thus

by Corollary 2.6, to calculate the length of k[X]/(I2(X) + m
⌈sq⌉ + m[q]), it suffices to count all (m + n)-tuples

(x1, . . . , xm, y1, . . . , yn) ∈ Z
m+n
≥0 such that ∑i xi = ∑j yj < ⌈sq⌉ and either all xi < q for all 1 ≤ i ≤ m or all yj < q for
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all 1 ≤ j ≤ q. There is a natural symmetry to this requirement which we exploit via an inclusion-exclusion type
argument. To this end, we introduce two symbols T and U which count monomials meeting relevant conditions.

Definition 3.1. Fix m,n, r and q in N. Let T (m,n, r, q) be the number of m + n-tuples,
(x1, . . . , xm, y1, . . . , yn) ∈ Z

m+n
≥0 such that

∑
i

xi =∑
j

yj < r and xi < q for all 1 ≤ i ≤m.

Also let U(m,n, r, q) of all m + n-tuples (x1, . . . , xm, y1, . . . , yn) ∈ Z
m+n
≥0 such that

∑
i

xi =∑
j

yj < r, for all i, xi < q, and for all j, yj < q.

Remark 3.2. The functions T (m,n, r, q) and U(m,n, r, q) were utilized in Eto and Yoshida’s calculation of the
Hilbert-Kunz multiplicity of the determinantal ring defined by 2-minors, viewed as the Segre product of two poly-
nomial rings [Eto02, EY03]. Specifically, for X an m × n-matrix of variables, the ring k[X]/I2(X) is isomorphic
to k[z1, . . . , zm]#k[y1, . . . , yn]. From [MS13, Rmk. 2.5], one expresses the length using the following monomial
counts. Set αm,d the number of monomials in k[z1, . . . , zm] of total degree d and αm,d,q the number of monomials
in k[z1, . . . , zm] of total degree d and zi-degree at most q for all i, and similarly for k[y1, . . . , ym]. From [MS13,
Rmk. 2.5] one expresses the length via inclusion-exclusion

λ(k[X]/(I2(X) +m
[q]) =

(q−1)n

∑
d=0

αm,dαn,d,q +
(q−1)m

∑
d=0

αn,dαm,d,q −
(q−1)m

∑
d=0

αn,q,dαm,d,q.

Immediately one has

λ(k[X]/(I2(X) +m
⌈sq⌉ +m[q])) =

⌈sq⌉

∑
d=0

αm,dαn,d,q +
⌈sq⌉

∑
d=0

αn,dαm,d,q −
⌈sq⌉

∑
d=0

αn,q,dαm,d,q.

The functions T (n,m, r, q) and U(n,m, r, q) arise from exploiting the correspondence in [RS15, Lem. 2.4] between
monomials and tuples.

Our goal is to give a closed form for T (m,n, r, q) and U(m,n, r, q). We start with a helpful auxiliary combinatorial
identity.

Lemma 3.3. For a, b, c ∈N,
∞

∑
w=0

(
c +w

a + b
)(
a

w
)(
b

w
) = (

c

a
)(
c

b
).

We offer two proofs of this statement. The first is based on the Zeilberger-Wilf algorithm. The second is a
more elaborate combinatorial proof which realizes a bijection between two sets each of which obviously having
cardinalities both sides of this identity.

Proof. (of Lemma 3.3) Set F (w,a) = (c+w
a+b
)(a

w
)( b

w
) and

G(w,a) =
w2(−a − b + c +w)

(1 + a + b)(−1 − a +w)
F (w,a).

One may immediately verify the identity

(1) G(w + 1, a) −G(w,a) = (a − c)F (w,a) + (1 + a)F (w,a + 1).

Setting H(a) ∶= ∑w F (w,a) and summing (1) over w we have 0 = (a − c)H(a)+ (1 + a)H(a + 1), and thus

H(a) =
(c − a + 1)⋯(c)

a!
H(0) = (

c

a
)

0

∑
w

(
c +w

b
)(
b

w
) = (

c

a
)(
c

b
).

�

Next, we give a stronger combinatorial proof of Lemma 3.3. We introduce some notation only used for this proof.
For n ∈ N, let [n] denote the set {1,2, . . . , n}. By a colored integer we mean an element of [c] × {red,blue}. We
call the first component of a colored integer its value and we call the second component its color. We impose an
order on the set of colored integers by declaring that red < blue and using the lexicographic order. In particular,
x < x′ if either the value of x is less than the value of x′, or their values are equal, x is red, and x′ is blue. For
example, 2 × blue < 3 × red and 5 × red < 5 × blue. By a chain of type (a, b) we mean a chain of colored integers
x1 < ⋯ < xa+b containing a red integers and b blue integers. Such a chain is determined completely by the values of
the red integers and the values of the blue integers, and so the number of chains of type (a, b) is (c

a
)(c

b
).
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Proof. (of Lemma 3.3) We show that the number of chains of type (a, b) is equal to the number of 4-tuples
(w,A,B,C), where w is an integer, A ⊆ [a] has size w, B ⊆ [b] has size w, and C ⊆ [c+w] has size a+ b. The latter

set clearly has size ∑
∞
w=0 (

c+w
a+b
)(a

w
)( b

w
) and so finding such a bijection immediately establishes the desired equality.

All sets involved are totally ordered, so we utilize the notation {i1 < . . . < in} for a set of natural numbers i1, . . . , in
ordered as indicated.

We first define a function ϕ from the set of all chains of type (a, b) to the set of 4-tuples. To do so, we need one
more piece of terminology. We call a consecutive pair of colored integers (xi, xi+1) with xi < xi+1 an rb-pair if xi is
red and xi+1 is blue. Note by the ordering there are two types of rb-pairs, those with equal value and those with
differing values. We call an rb-pair stable provided the values in the pair agree.

Let X be a chain of type (a, b) consisting of colored integers x1 < ⋯ < xa+b. Let {i1 < ⋯ < ia} be the set of indices
of red integers in X and let {j1 < ⋯ < jb} be the set of indices of blue integers in X . We first encode the rb-pairs.
Set A = {ℓ ∶ (xiℓ , xiℓ+1) is an rb-pair} and similarly B = {ℓ ∶ (xjℓ−1, xjℓ)is an rb-pair}. Clearly A ⊆ [a] and B ⊆ [b],
and #A =#B.

We now produce the tuple (w,A,B,C). The sets A and B have already been defined and both have cardinality
w. It suffices now to construct C. This will encode both the values of the chain and the locations of the stable
rb-pairs. Set C′ ⊆ [c] be the set of values of the elements of X . To capture the location of the stable rb-pairs in a
recoverable manner, we write A = {s1 < . . . < sw} and set

C′′ = {ℓ ∶ the rb-pair starting with xsℓ is stable}.

One may check that #C′ +#C′′ = a+ b. Setting C = C′ ∪ {c+ ℓ ∶ ℓ ∈ C′′} ⊆ [c+w], we have produced from the given
chain X of type (a, b) a tuple ϕ(X) ∶= (w,A,B,C). Its clear that ϕ is injective. In particular, two chains X and
X ′ have ϕ(X) = ϕ(X ′), then they must have the same value set as both are recovered by C ∩ [c], and the same
locations of rb-pairs as both are determined by A and B, as well as the same locations of stable rb-pairs as these
locations are determined by C ∖ (C ∩ [c]). All this data completely determines the red and blue colored integers in
the chains X and X ′, hence they are the same chain.

We now check that ϕ is surjective. Fix (w,A,B,C) a 4-tuple of the desired form. Write A = {i1 < ⋯ < iw} ⊆ [a]
and B = {j1 < ⋯ < jw} ⊆ [b]. Also decompose C′ = C ∩ [c] = {c1 < ⋯ < ca+b−f} and let C′′ = {s1 < ⋯ < sf}
where C ∩ [c + 1, c + j] = {c + s1 < ⋯ < c + sf}. We now build a chain X = (x1 < ⋯ < xa+b) of type (a, b) with
ϕ(X) = (w,A,B,C). To determine the chain we first construct the coloring, that is we describe a sequence of a+ b
colored buckets into which we will place values. This is determined by the sets A and B. Color the first j1 − 1
buckets blue, then the next i1 buckets red, the next j2 − j1 buckets blue, the next i2 − i1 buckets red, and so on.
Finishing this, the sequence may be too short, however we know that there will be no more rb-pairs, so we fill in
with the remaining number of blue buckets, then the remaining number of red buckets.

Now it suffices to fill in the values. The coloring has been chosen so that the iℓth red bucket is part of an rb-pair
for 1 ≤ ℓ ≤ w, and similarly the jℓth blue bucket is part of an rb-pair. Use the set C′′ to mark the red component
of the stable rb-pairs. Now start placing values in buckets in order, and repeat values on the stable rb-pairs so
marked. This produces the chain X . To see that ϕ(X) = (w,A,B,C) note that A and B characterize the rb-pairs
of X and C consists precisely of the values and the encoded locations of the stable rb-pairs by construction.

�

Example 3.4. Fix a = 7, b = 8, and c = 15. As is typical with combinatorial proofs, it is instructive to see the
functions in action in an example. Consider the (7,8) chain

1r < 2r < 3r < 4b < 5r < 5b < 6b < 7b < 8b < 9r < 10r < 10b < 11b < 12r < 13b

where we denote a red number nr with value n and a blue number nb with value n. Realize this chain as x1 < . . . < x15
colored integers.

The red indicies are {1 < 2 < 3 < 5 < 10 < 11 < 14} and the blue indicies are {4 < 6 < 7 < 8 < 9 < 12 < 13 < 15}.
Writing the former set as {i1 < . . . < i7} and the latter as {j1 < . . . < j8}, we have the set A of red subindicies of
rb-pairs is {3 < 4 < 6 < 7} and B the set of blue subindicies of rb-pairs is {1 < 2 < 6 < 8}. So w = 4. The set C′ is
the set of values {1, . . . ,13}. The set C′′ is the set of those indices in A which arise for stable rb-pairs, in this case
C′′ = {2,3}. Shifting these by c = 15 we have C = {1, . . . ,13,17,18} and we have ϕ(X) = (4,A,B,C).

Continuing with a = 7, b = 8, and c = 15, we compute ψ(2,A,B,C) where A = {3 < 5}, B = {1 < 2}, and
C = {1, . . . ,14,17} ⊂ [17]. To calculate ψ(2,A,B,C) we split C into the honest values {1, . . . ,14} and the index
17−15 = 2 which corresponds to a unique stable rb-pair. We first determine the pattern of colors. Since B = {1 < 2},
the first blue number is part of an rb-pair, which means the sequence starts with red numbers. Since A = {3 < 5}, the
third red number is the earliest one that is part of an rb-pair, so our sequence starts r < r < r < b. The second blue
number is also part of an rb-pair, and so we must switch back to red numbers until we reach the 5th red number,
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so our sequence looks like r < r < r < b < r < r < b. There are no more rb-pairs, and so we must finish writing blue
numbers and then end with the remaining red numbers: r < r < r < b < r < r < b < b < b < b < b < b < b < r < r. We
have that the values of the elements in our chain are nonincreasing, and the 2nd rb-pair is the only stable rb-pair,
and the values of the 15 colored integers include all values in [14], hence our chain of type (7,8) is

1r < 2r < 3r < 4b < 5r < 6r < 6b < 7b < 8b < 9b < 10b < 11b < 12b < 13r < 14r.

With Lemma 3.3 in hand, we draw out a few immediate consequences, which will be applied in the main counting
result, Theorem 3.8.

Corollary 3.5. For a, b, c ∈N,
c

∑
i=0

(
i

a
)(
i

b
) =∑

j

(
c + j + 1

a + b + 1
)(
a

j
)(
b

j
).

Proof. By Lemma 3.3 and the Hockeystick Lemma,

c

∑
i=0

(
i

a
)(
i

b
) =

c

∑
i=0

∑
j

(
i + j

a + b
)(
a

j
)(
b

j
) =∑

j

(
c

∑
i=0

(
i + j

a + b
))(

a

j
)(
b

j
) =∑

j

(
c + j + 1

a + b + 1
)(
a

j
)(
b

j
). �

Corollary 3.6. For c, u, u′, v, v′ ∈N,
c

∑
i=0

(
t + i

u
)(
v + i

w
) =∑

a

∑
b

∑
j

(
t

u − a
)(

v

w − b
)(
c + j + 1

a + b + 1
)(
a

j
)(
b

j
).

Proof. The sum ∑
c
i=0 (

t+i
u
)(v+i

w
) is the coefficient of xuyw in the polynomial

c

∑
i=0

(x + 1)i+t(y + 1)i+v = (x + 1)t(y + 1)v
c

∑
i=0

(x + 1)i(y + 1)i.

The coefficient of xuyw in the right hand side is, by Corollary 3.5,

∑
a

∑
b

(
t

u − a
)(

v

w − b
)

c

∑
i=0

(
i

a
)(
i

b
) =∑

a

∑
b

∑
j

(
t

u − a
)(

v

w − b
)(
c + j + 1

a + b + 1
)(
a

j
)(
b

j
). �

The final ingredient is following lemma, which offers a direct count of the type of tuples we are interested in. Its
proof is a direct application of [RS15, Lem. 2.5], inclusion-exclusion, and Pascal’s identity and left to the reader.

Lemma 3.7. Fix natural numbers v, d, and q. The number of tuples (z1, . . . , zv) ∈ Z
v
≥0 with ∑i zi = d and zi < q is

∑
i

(−1)i(
v

i
)(
d − iq + v − 1

v − 1
).

Armed with this, we obtain a closed form for T (m,n, r, q) and U(m,n, r, q). These closed forms involve the
monus operation a

q

b =max{a − b,0}.

Theorem 3.8. For fixed d ∈N,

T (m,n, r, q) =∑
i

∑
a

∑
b

∑
j

(−1)i(
m

i
)(

m − 1

m − 1 − a
)(
iq + n − 1

n − 1 − b
)(
r − iq + j

a + b + 1
)(
a

j
)(
b

j
)

and

U(m,n, r, q) =∑
i

∑
j

∑
a

∑
b

∑
ℓ

(−1)i+j(
m

i
)(
n

j
)(
(j

q

i)q +m − 1

m − 1 − a
)(
(i

q

j)q + n − 1

n − 1 − b
)(
r −max{i, j}q + ℓ

a + b + 1
)(
a

ℓ
)(
b

ℓ
)

Proof. Both claims are proved using similar techniques. By Lemma 3.7, the number of m-tuples (x1, . . . , xm) such
that ∑i xi = d and xi < q for all i is

∑
i

(−1)i(
m

i
)(
d − iq +m − 1

m − 1
)

and the number of n-tuples (y1, . . . , yn) with ∑j yj = d is (d+n−1
n−1
). Therefore,

T (m,n, r, q) =
r−1

∑
d=0

∑
i

(−1)i(
m

i
)(
d − iq +m − 1

m − 1
)(
d + n − 1

n − 1
) =∑

i

(−1)i(
m

i
)
r−1

∑
d=0

(
d − iq +m − 1

m − 1
)(
d + n − 1

n − 1
).

Applying Corollary 3.6 with c = r − iq − 1, t = u =m − 1, v = iq + n − 1, and w = n − 1, we obtain that

r−1

∑
d=0

(
d − iq +m − 1

m − 1
)(
d + n − 1

n − 1
) =

r−iq−1

∑
d′=0

(
d′ +m − 1

m − 1
)(
d′ + iq + n − 1

n − 1
) =∑

a

∑
b

∑
j

(
m − 1

m − 1 − a
)(
iq + n − 1

n − 1 − b
)(
r − iq + j

a + b + 1
)(
a

j
)(
b

j
).
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Thus,

T (m,n, r, q) =∑
i

∑
a

∑
b

∑
j

(−1)i(
m

i
)(

m − 1

m − 1 − a
)(
iq + n − 1

n − 1 − b
)(
r − iq + j

a + b + 1
)(
a

j
)(
b

j
).

Similarly, we find an equivalent expression for U . We have that

U(m,n, r, q) =
r−1

∑
d=0

∑
i

∑
j

(−1)i+j(
m

i
)(
n

j
)(
d − iq +m − 1

m − 1
)(
d − jq + n − 1

n − 1
).

if i ≥ j, then letting c = r − iq − 1, t = u =m − 1, v = iq − jq + n − 1, and w = n − 1, we have that

r−1

∑
d=0

(
d − iq +m − 1

m − 1
)(
d − jq + n − 1

n − 1
) =

r−iq−1

∑
d′=0

(
d′ +m − 1

m − 1
)(
d′ + iq − jq + n − 1

n − 1
)

=∑
a

∑
b

∑
ℓ

(
m − 1

m − 1 − a
)(
iq − jq + n − 1

n − 1 − b
)(
r − iq + ℓ

a + b + 1
)(
a

ℓ
)(
b

ℓ
).

By a symmetric argument, if i < j, then

r−1

∑
d=0

(
d − iq +m − 1

m − 1
)(
d − jq + n − 1

n − 1
) =∑

a

∑
b

∑
ℓ

(
jq − iq +m − 1

m − 1 − a
)(

n − 1

n − 1 − b
)(
r − jq + ℓ

a + b + 1
)(
a

ℓ
)(
b

ℓ
).

Therefore,

U(m,n, r, q) =∑
i

∑
j

∑
a

∑
b

∑
ℓ

(−1)i+j(
m

i
)(
n

j
)(
(j

q

i)q +m − 1

m − 1 − a
)(
(i

q

j)q + n − 1

n − 1 − b
)(
r −max{i, j}q + ℓ

a + b + 1
)(
a

ℓ
)(
b

ℓ
).

�

We are now set to put this all together to give a closed form for the desired length function.

Theorem 3.9. Fix k a field, p an integer and q a p-power. Let X be an m×n-matrix of variables, m the homogeneous

maximal ideal of k[X] and I2(X) the ideal of 2 × 2-minors. Let s ∈R>0 such that sq ∈ Z, and set

R(m,n, s, q) ∶=∑
a

∑
b

∑
ℓ

(
m − 1

a
)(
n − 1

b
)(

sq + ℓ

a + b + 1
)(
a

ℓ
)(
b

ℓ
)

S(m,n, s, q) ∶=∑
i>0

∑
j>0

∑
a

∑
b

∑
ℓ

(−1)i+j(
m

i
)(
n

j
)(
(j

q

i)q +m − 1

m − 1 − a
)(
(i

q

j)q + n − 1

n − 1 − b
)(
(s −max{i, j})q + ℓ

a + b + 1
)(
a

ℓ
)(
b

ℓ
).

The length λ( k[X]
m
⌈sq⌉+m[q]+I2(X)

) = R(m,n, s, q) − S(m,n, s, q) is eventually a polynomial in q for all s.

Proof. First use Corollary 2.6 to give a k-basis for the vector space k[X]/(m⌈sq⌉ + m
[q] + I2(X)) consisting of

monomials of bounded degree and with restricted row and column sums. This reduces the calculation to the
functions T and U . In particular, by applying Lemma 3.7 and Theorem 3.8, we have

λ(
k[X]

m
sq +m[q] + I2(X)

) = T (m,n, sq, q) + T (n,m, sq, q) −U(m,n, sq, q)

=∑
i

∑
a

∑
b

∑
ℓ

(−1)i(
m

i
)(

m − 1

m − 1 − a
)(
iq + n − 1

n − 1 − b
)(
(s − i)q + ℓ

a + b + 1
)(
a

ℓ
)(
b

ℓ
)

+∑
j

∑
a

∑
b

∑
ℓ

(−1)j(
n

j
)(
jq +m − 1

m − 1 − a
)(

n − 1

n − 1 − b
)(
(s − j)q + ℓ

a + b + 1
)(
a

ℓ
)(
b

ℓ
)

−∑
i

∑
j

∑
a

∑
b

∑
ℓ

(−1)i+j(
m

i
)(
n

j
)(
(j

q

i)q +m − 1

m − 1 − a
)(
(i

q

j)q + n − 1

n − 1 − b
)(
(s −max{i, j})q + ℓ

a + b + 1
)(
a

ℓ
)(
b

ℓ
)

=∑
a

∑
b

∑
ℓ

(
m − 1

a
)(
n − 1

b
)(

sq + ℓ

a + b + 1
)(
a

ℓ
)(
b

ℓ
)

−∑
i>0

∑
j>0

∑
a

∑
b

∑
ℓ

(−1)i+j(
m

i
)(
n

j
)(
(j

q

i)q +m − 1

m − 1 − a
)(
(i

q

j)q + n − 1

n − 1 − b
)(
(s −max{i, j})q + ℓ

a + b + 1
)(
a

ℓ
)(
b

ℓ
)

where the last equality follows as the i = 0 summand of U(m,n, sq, q) is precisely T (n,m, sq, q) and the j = 0
summand of U(m,n, sq, q) is precisely T (m,n, sq, q) and so they cancel in the sum, except for the summand

∑a∑b∑ℓ (
m−1
a
)(n−1

b
)( sq+ℓ

a+b+1
)(a

ℓ
)(b

ℓ
) which only appears once in U(m,n, sq, q) when i = 0 and j = 0, but appears twice

in T (m,n, sq, q) + T (n,m, sq, q).
�
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3.1. Examples. Fix R = k[X]/I2(X) where X is an m × n-matrix. We conclude with a few examples using
Theorem 3.8 and use this to calculate es(R) for small values of m and n.

Example 3.10. Suppose m = n = 2 and assume throughout assume s ∈ Z[p−1] and so sq is always an integer

for q ≫ 0. We calculate λ( k[X]
m

sq+m[q]+I2(X)
) by calculating R(2,2, s, q) and S(2,2, s, q). The latter depends on the

integer part of s.

We always have R(2,2, s, q) = s3q3

3
+ s2q2

2
+ sq

6
. For s < 1, S(2,2, s, q) = 0 and so λ( k[X]

m
sq+m[q]+I2(X)

) = s3q3

3
+ s2q2

2
+ sq

6
.

For 1 ≤ s < 2 we have

S(2,2, s, q) =
4

3
(s − 1)3q3 + 2(s − 1)2q2 +

2

3
(s − 1)q.

Likewise, for s ≥ 2 we have

S(2,2, s, q) = (
s3

3
−
4

3
) q3 +

s2

2
q2 + (

s

6
+
1

3
) q.

Putting this together yields a closed form for the length in question

λ(
k[X]

m
sq +m[q] + I2(X)

) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

s
3

3
q3 + s

2

2
q2 + s

6
q if 0 < s ≤ 1

( s
3

3
− 4

3
(s − 1)3) q3 + ( s

2

2
− 2(s − 1)2) q2 + ( s

6
− 2

3
(s − 1)) q if 1 < s ≤ 2

4

3
q3 − 1

3
q if s > 2

.

Recalling that

2Hs(3) − 2Hs−1(3) =

⎧⎪⎪
⎨
⎪⎪⎩

1

3
s3 if s < 1

1

3
s3 − 4

3
(s − 1)3 if 1 ≤ s < 2

we have shown that

hs(m) = lim
q→∞

1

q3
λ(

k[X]

m
sq +m[q] + I2(X)

) =

⎧⎪⎪
⎨
⎪⎪⎩

2Hs(3) − 2Hs−1(3) if s ≤ 2
4

3
if s ≥ 2.

and thus

es(R) =

⎧⎪⎪
⎨
⎪⎪⎩

2 − 2Hs−1(3)
Hs(3)

if s ≤ 2
4

3Hs(3)
if s ≥ 2.

.

Example 3.11. Now fix m = 2 and n = 3. We have R(2,3, s, q) = s
4

8
q4 + 5s

3

12
q3 + 3s

2

8
q2 + s

12
q and

S(2,3, s, q) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 < s < 1
3

4
(s − 1)4q4 + 5

2
(s − 1)3q3 + 9

4
(s − 1)2q2 + 1

2
(s − 1)q if 1 ≤ s < 2

1

4
(4s3 − 9s2 + 7)q4 + 1

4
(9s2 − 9s − 8)q3 + 1

4
(5s − 1)q2 + 1

2
q if 2 ≤ s < 3

(−13
8
+ s4

8
)q4 + ( 1

4
+ 5

12
s3)q3 + ( 1

8
+ 3

8
s2)q2 + ( 1

4
+ s

12
)q if 3 ≤ s

and we have the length λ( k[X]
m

sq+m[q]+I2(X)
) is given by

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

s4

8
q4 + 5s3

12
q3 + 3s2

8
q2 + s

12
q if 0 < s < 1

( s
4

8
− 3

4
(s − 1)4)q4 + ( 5s

3

12
− 5

2
(s − 1)3)q3 + ( 3s

2

8
− 9

4
(s − 1)2)q2 + ( s

12
− 1

2
(s − 1))q if 1 ≤ s < 2

( s
4

8
− 1

4
(4s3 − 9s2 + 7))q4 + ( 5s

3

12
− 1

4
(9s2 − 9s − 8))q3 + ( 3s

2

8
− 1

4
(5s − 1))q2 + ( s

12
− 1

2
)q if 2 ≤ s < 3

13

8
q4 − 1

4
q3 − 1

8
q2 − 1

4
q if 3 ≤ s

.

We have that

hs(m) = lim
q→∞

1

q4
λ(

k[X]

m
sq +m[q] + I2(X)

) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

s4

8
if 0 < s < 1

( s
4

8
− 3

4
(s − 1)4) if 1 ≤ s < 2

( s
4

8
− 1

4
(4s3 − 9s2 + 7)) if 2 ≤ s < 3

13

8
if 3 ≤ s

.

In terms of the normalizing factors Hs one may write this as

es(R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 if 0 < s < 1

3 − 6Hs−1(4)
Hs(4)

if 1 ≤ s < 2
13

8Hs(4)
− H3−s(4)+sH3−s(3)

Hs(4)
if 2 ≤ s < 3

13

8Hs(4)
if 3 ≤ s

.
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