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Abbreviations 1 

AKT, serine/threonine-specific protein kinase 2 

AMPK, 5’AMP-activated protein kinase  3 

AP-1, activated activator protein 1 (AP 4 

CCL2, chemokine (C-C motif) ligand 2 5 

COX-2, cyclooxygenase-2  6 

CRP, C-reactive protein 7 

DHA, docosahexaenoic acid  8 

EC50, median effective dose  9 

EGCG, epigallocatechin-3-gallate 10 

EPA, eicosapentaenoic acid   11 

H2O2, hydrogen peroxide 12 

HO-1, heme oxygenase-1 13 

HUVEC, human umbilical vein endothelial cell 14 

ICAM-1, intercellular adhesion molecule-1 15 

IFN, interferon  16 

IL-1, interleukin-1 17 

iNOS, inducible nitric oxide 18 
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JNKs, c-Jun N-terminal kinases 1 

LPS, lipopolysaccharides 2 

 MAPK, mitogen-activated protein kinases 3 

 MCP-1, monocyte chemoattractant protein-1 (MCP-1) 4 

MMPs, matrix metalloproteinases  5 

NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells 6 

NO, nitric oxide  7 

Nrf2, nuclear factor (erythroid-derived 2)-like 2  8 

O2•−, superoxide,  9 

OH•, hydroxyl 10 

ONOO•−, peroxynitrite 11 

PEG2, prostaglandin E2 12 

PUFA, polyunsaturated fatty acid 13 

SIRT1, sirtuin 1  14 

ROS, reactive oxygen species 15 

SOD, superoxide dismutase 16 

TGF-β, transforming growth factor-β 17 

TNF-α, tumor necrosis factor-α 18 
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Abstract 1 

         The anti-inflammatory effects of phytochemicals, bioactive components from plants having 2 

health benefits, have been heavily investigated in the last several decades. However, the gap 3 

between the high dosage demands (μM) of phytochemicals in vitro studies and the low 4 

bioavailability (nM) of most phytochemicals after consuming relevant foods/supplements in 5 

humans undermines the application of these phytochemicals in the prevention of chronic 6 

inflammation and its related chronic diseases in humans.  One of the approaches to bridging this 7 

gap is to combine two or more phytochemicals/foods to synergistically prevent chronic 8 

inflammation. While increasing combinations of phytochemicals on anti-inflammation studies 9 

have been reported, there is no report dedicating why combining two or more phytochemicals 10 

synergistically attenuates chronic inflammation. In the present review, we summarized different 11 

types of combinations exerting synergistic anti-inflammatory effects such as the combination of 12 

phytochemicals from the same foods, and the combination of phytochemicals from different 13 

foods/plants. Particularly, we proposed five mechanisms including enhancing the bioavailability 14 

of phytochemicals, increasing antioxidant capacity, interacting with gut microbiome and 15 

targeting same and different signaling pathways, to understand how the combination of 16 

phytochemicals exerts synergistic anti-inflammatory effects in cells, animals, and humans. This 17 

review provides clues to boost more studies to combine several phytochemicals/foods to reduce 18 

chronic inflammation and prevent chronic diseases in humans. 19 

 20 

Key Words: Anti-inflammatory, synergistic, combination, phytochemicals, mechanism  21 

 22 
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1. Introduction 1 

 2 

        While acute inflammation protects the body by contesting microbial invasion and healing 3 

injuries, chronic inflammation attacks critical molecules, cells, and organs to develop various 4 

chronic diseases such as cardiovascular disease, diabetes, cancer, and neurological diseases, 5 

therefore, accelerate aging [1]. Comparing to the signs of acute inflammation such as fever, 6 

swelling, redness, and pain, chronic low-grade inflammation is invisible and difficult to notice 7 

and is called silent inflammation. The chronic inflammation is characterized by high circulating 8 

levels of pro-inflammatory markers including interleukin-1 (IL-1), IL-6, IL-8, IL-13, C-reactive 9 

protein (CRP), interferon (IFN), transforming growth factor-β (TGF-β), tumor necrosis factor-α 10 

(TNF-α) and its soluble receptors and serum amyloid A [2]. These elevated pro-inflammatory 11 

molecules further recruit more immune cells such as neutrophils, eosinophils, monocytes, mast 12 

cells and platelets to produce more  pro-inflammatory molecules as well as nitric oxide (NO), 13 

reactive oxygen species (ROS), resulting the damage of structure, function and integrity of lipids, 14 

proteins and nucleic acids, and then induce various chronic diseases [3]. The major risk factors 15 

of chronic inflammation are aging [1], unhealthy lifestyle involving tobacco use, alcohol use, 16 

stress, lack of regular physical activity and obesity [4, 5] as well as environmental pollution [6]. 17 

 18 

        Strong evidence has been repeatedly presented to support that a healthy lifestyle reduces the 19 

risks of chronic inflammation and other chronic diseases [7, 8], particularly selecting healthy 20 

foods can significantly prevent chronic diseases from the epidemiological studies. For instance, 21 

taking a Mediterranean-like diet was closely associated with relatively lower levels of glucose, 22 
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lipids, CRP, blood pressure and 10-year cardiovascular risk in men [9]. The Dietary Approaches 1 

to Stop Hypertension (DASH) diet, which was originally developed to prevent cardiovascular 2 

diseases, significantly reduced circulating CRP and apolipoprotein as well as the rate of 3 

cardiovascular disease in humans [10]. Based on these observations, Barry Sears initiated the 4 

concept “anti-inflammatory diet” to fight obesity and obesity-induced metabolic syndrome 5 

characterized by chronic inflammation about 20 years ago [11]. All these healthy/anti-6 

inflammatory diets comprise high consumption of fruits and vegetables (about half of the plate), 7 

and these fruits and vegetables contain high levels of phytochemicals, bioactive components 8 

from plants having protective effects. These phytochemicals may contribute to the beneficial 9 

effects of these healthy diets on the attenuation of chronic inflammation and thereby prevent 10 

various chronic diseases [9-11]. 11 

        However, the understanding of the mechanism of these anti-inflammatory diets remains 12 

unclear because 1) one food may contain several and even hundreds phytochemicals [12] and our 13 

diets usually have multiple foods; 2) the complexity of the digestion, absorption, and metabolism 14 

of phytochemicals and foods; 3) the disagreement between the high dosage demands of most 15 

phytochemicals in in vitro/vivo studies and the low bioavailability of most phytochemicals after 16 

consuming relevant foods/supplements in humans [13]. One of the approaches of solving these 17 

issues is to combine two or more phytochemicals to investigate if and how the combination 18 

synergistically exerts anti-inflammatory effect than the individual chemicals. In the present 19 

review, for the first time to our knowledge, we summarized the synergistic anti-inflammatory 20 

effects of different types of combinations of phytochemicals, particularly on reducing low-grade 21 

chronic inflammation, and proposed possible mechanisms of the synergistic anti-inflammatory 22 

effects of the combinations of phytochemicals using cardiovascular disease as a model. 23 
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2. Phytochemicals and the major issues of anti-inflammatory research using 1 

phytochemicals  2 

 3 

2.1 Phytochemicals 4 

       Phytochemicals literally mean chemicals from a plant and there is no universal definition 5 

acceptable for everyone. However, this term in nutrition is used to describe plant-derived 6 

bioactive compounds having the potential health benefits [14, 15]. Most phytochemicals are 7 

secondary plant metabolites which are present in a large variety of foods including fruit, 8 

vegetables, cereals, nuts, and cocoa/chocolate as well as in beverages including juice, tea, coffee, 9 

and wine. More than 1 g of phytochemicals per day is commonly ingested with the diet [16]. 10 

According to the chemical structures, phytochemicals can be classified as seven main categories: 11 

phenolic compounds, terpenes, betalains, organosulfides, indoles/glucosinolates/sulfur 12 

compounds, protein inhibitors, and other organic acids. Table 1 lists some of the phytochemicals 13 

now attracting serious scientific attention, identifies food sources and outlines potential anti-14 

inflammatory effects. 15 

 16 

Table 1. Classification, food sources, and outlines potential anti-inflammatory effects of 17 

phytochemicals 18 

Category   Chemical(s) Food/Plant resources Anti-inflammatory Effects 

 

Phenolic 

compounds 

Flavonoids  Flavonols Fisetin Strawberries, apples, 

persimmons, onions, and 

cucumbers 

Inhibits the activity of several pro-

inflammatory cytokines, 

including TNFα, IL- 6, and NF-κB 

[17] 

   Kaempferol Apples, grapes, tomatoes, 

green tea, potatoes, 

onions, broccoli 

 

Reduces the release of TNF-α and 

IL-1β; Down-regulation the gene 

and protein expressions of pro-

atherogenic molecules, such as E-

sel, ICAM-1, VCAM-1 and MCP-

1 [18] 
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   Galangin 

 

Alpinia officinarum, 

Helichrysum aureonitens, and 

rhizome 

 

Decrease IL-4, IL-5, and IL-13 

levels, TNF-� induced p65 nuclear 

translocation and expression of 

MCP-1, CXCL10, and VCAM-1 

[19] 

   Myricetin 

 

Grape, apple, berries, nuts, tea, 

and red wine 

Prevent NF-κB activation in a 

monocyte; Inhibits the secretion of 

IL-6, IL-8 [20] 

   Quercetin Red onions, kale,  apples, 

parsley, sage, tea 

Reduce IL-6 and TNF-α levels via 

modulation of NF-kB  [21] 

  Flavanones Hesperetin 

 

lemons and sweet oranges Reduce inflammatory targets 

including NF-κB, iNOS, and 

COX-2, and the markers of 

chronic inflammation [22] 

   Naringenin Grapefruit, herbs Decrease the expression and 

production of TNF-α and MCP-1, 

suppress NF-κB activation [23] 
  Flavones Apigenin Parsley, onions,  tea, wheat 

sprouts 

Inhibit TNFα-induced NF-κB 

transcriptional activation; inhibits 

TNFα-induced JNK activation 

[24] 
   Luteolin Beets, artichokes, leaves, 

rinds, barks, clover blossom, 

and ragweed pollen 

 

Active anti-oxidative enzymes, 

suppress the NF-κB pathway and 

inhibits pro-inflammatory 

substances [25] 

  Flavan-3-ols  Catechin Tea, wine, cocoa,  Inhibit TNF-α -induced NF-κB 

activity and consequently strongly 

diminished the secretion of IL-8 

[26] 

   Epicatechin Tea, wine, beans, cocoa Inhibit diet-induced NF-κB 

activity [27] 

   Epigallocatechin 

gallate 

 

Tea, apple skin, plums, onions, 

hazelnuts, pecans, and carob 

powder 

 

Decrease lipid peroxidation, 

oxidative stress and the production 

of NO radicals by inhibiting the 

expression of iNOS; Reduces the 

activity of NF-κB and AP-1 [28] 

   Theaflavin Black tea Inhibit TNF-α-mediated activation 

of IκB kinase and subsequent 

activation of the IκB-α/NF-κB 
pathway [29] 

   Proanthocyanins Apples, berries, cocoa-based 

products, red grapes, red wine 

Reduce serum levels of CRP, 

VCAM-1,  and IL-1β [30] 

  Anthocyanins Malvidin Blueberry, raspberry, black 

rice, and black soybean 

Reduce serum levels of CRP, 

VCAM-1, and IL-1β [30] 

  Isoflavones Genistein Lupin, soybeans, kudzu, 

and psoralea 

 

Reduce peripheral and central 

NF‐κB, NO system and 

pro‐inflammatory cytokine 

over‐activation [31] 

   Daidzein Soybeans Inhibit the activation of the signal 

transducer and activator of 

transcription 1 (STAT-1) [32] 

  Chalconoids Phlorizin Apple, pear, cherry Inhibit the levels of NO, PGE2, 

IL-6, TNF-α, iNOS , and COX-2; 

suppress the p65 proteins, and 

decreased phosphorylation in 

MAPK pathways [33] 

 Phenolic acids  Ellagic acid Walnuts, pecans, cranberries, 

raspberries, strawberries, 

grapes 

Down-regulation of NF–κB, 

reduce biosynthesis of iNOS and 

ultimately inhibits the production 

of NO [34] 

   Curcumin Curcuma longa, 

Curcuma aromatic, Curcuma 

zedoaria 

 

suppress the action of IL-6 

through the downregulation of 

STAT3 activation; negatively 

regulates the action of IL-2; 
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suppresses the activation of the 

transcription factor NF–κB 

[35] 

 Hydroxycinnamic 

 acids 

 Caffeic acid Coffee, argan oil, thyme, sage, 

spearmint 
Decrease levels of IL‐6, IL‐1β, 
TNF‐α and MCP‐1 [36] 

 Stilbenoids  Resveratrol Skin of grapes, blueberries, 

raspberries, mulberries 

Inhibit iNOS and COX-2 via its 

inhibitory effects on NF‐κB or the 

activator protein‐1 (AP‐1) [37] 

Terpenes Carotenoids Carotenes Carotene Sweet potato, carrots, mustard 

greens, apricots, asparagus, 

broccoli 

Downregulation of iNOS, COX-2, 

and NADPH oxidase protein and 

mRNA expression and synergistic 

inhibition of TNFα secretion [38] 

   Lutein Spinach, kale and yellow 

carrots 

Reduce the level of nuclear NF-

κB, IL-1β, and Cox-2 [39] 

 Monoterpene Limonene  Oils of citrus, cherries, 

spearmint  
Inhibit the production of ROS; 

diminished MCP‐1 production via 

NF-κB activation; inhibits cell 

chemotaxis in a p38 MAPK 

dependent manner [40] 

 Saponins   Vegetables, beans and herbs, 

soapwort, soaproot, soapbark, 

and soapberry 

Inhibit of COX-2 activity and 

TNFα production [41] 

 Lipids  β-Sitosterol  Vegetable oil, nuts, avocados Inhibit the phosphorylation of NF-

kB [42] 

 Triterpenoid  Lupeol 

 

Mango, Acacia visco, abronia 

villosa 

Reduce CD4 + T and CD8 + T cell 

counts and the level of IL-2, IFN-

gamma and IL-4 [43] 

Betalains Betacyanins Betanin  Beets, Opuntia cactus, Swiss 

chard 
Reduce superoxide anion, TNF-α, 

and interleukin IL-1β levels , 

increase IL-10 levels [43] 

 Betaxanthins Indicaxanthin  Beets, Mirabilis jalapa flowers, 

prickly pears, red dragonfruit 

  

Inhibit the release of PGE2, NO, 

IL-1b, and TNF-α, decrease IL-1b, 

TNF-α, iNOS, and COX2 mRNA 

[44] 

Indoles, sulfur 

compounds  
Indole-3-carbinol    Broccoli, cabbage, cauliflower, 

brussels sprouts, collard 

greens,  and kale 

Reduce the production of pro-

inflammatory mediators such as 

NO, IL-6, and IL-1b in through 

attenuation of the TRIF-dependent 

signaling pathway; suppress pro-

inflammatory cytokine production 

such as IL-6, TNF-α [45] 

 Sulforaphane    Broccoli, Brussels sprouts, and 

cabbages 

Inhibit LPS-stimulated mRNA 

expression, protein expression, 

and production of TNF-α, IL-1β, 

COX-2 and iNOS [46] 

 Allicin    Garlic  Increase the phosphorylation of 

Akt and endothelial nitric oxide 

synthase (eNOS) [47] 

Protein 
inhibitors  

Protease inhibitors    Orange, spinach, rhubarb  Inhibit the downstream portion of 
the NF-kB pathway; reduce the 

production of IL-1, TNF-α, IL-6, 

and IL-10 [48] 

Other organic 

acids  
Lactic acid   Koumiss, laban, yogurt, kefir, 

cottage cheeses 
Decrease TNF-α secretion; 

inhibits NF-kB activation [49] 

 Anacardic acid   Cashews, mangoes  Inhibit NF-κB activation; suppress 

the activation of IκBα kinase; 

inhibits acetylation and nuclear 

translocation of p65  [50]  

 1 
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2.2 Major issues and solutions of anti-inflammatory research using phytochemicals 1 

      Although many phytochemicals of each category exert anti-inflammatory effects, the 2 

complexity of the digestion, absorption, metabolism, and interactions of phytochemicals and 3 

foods undermines the understanding and application of these anti-inflammatory 4 

phytochemicals/foods to attenuate chronic inflammation and thereby prevent chronic diseases 5 

[51]. For instance, the quantity and composition of phytochemicals in plants are significantly 6 

influenced by species, age, part of the plant, cultivation method, harvesting season, preservation 7 

method and geographical distribution [52]. Particularly, the range of concentrations of 8 

phytochemicals typically used to study mechanisms in cell culture models (1–100 μM, or 9 

sometimes higher) is generally higher than the levels in the bloodstream (usually at nM to very 10 

low μM) following consumption of typical doses in foods and supplements [53, 54]. The low 11 

bioavailability of phytochemicals may be caused by [13]: 1) special molecular structures such as 12 

attached to β-glucosides, high molecular weights, isomeric configuration, hydrophobic and low 13 

solubility in the lumen; 2) most phytochemicals do not have the optimal physicochemical 14 

properties necessary for passive diffusion, trans‐membrane transporters are needed for enhancing 15 

their permeability; 3) complex metabolism and interactions between different nutrients and 16 

phytochemicals. For instance, after entered into an enterocyte, the phytochemical may be 17 

subjected to several phase II enzymes leading to conjugation with methyl (catechol-O-18 

methyltransferases-COMT), sulfate (sulphotransferases-SULT) and glucuronyl groups (uridine-19 

5’-diphosphate glucuronosyltransferases-UDPGT) and resulted as different chemicals from the 20 

original form [55]. 21 

          However, many phytochemicals and whole foods appear to effectively prevent or 22 

ameliorate the symptoms of metabolic syndrome even at low dietary doses in animals [56, 57] 23 
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and humans [58, 59]. For example, theobromine, a phytochemical from cocoa, synergistically 1 

enhanced the anti-hypertensive effect of (−)-epicatechin, the major phytochemicals in cocoa, by 2 

increasing the circulating level of (−)-epicatechin in humans [59], indicating whole cocoa 3 

(extract) intake is better in reducing blood pressure than that of pure (−)-epicatechin alone. 4 

Another study found that co-administrating nutrient mixture (ascorbic acid, selenium, L-lysine, 5 

L-proline, L-arginine, N-acetyl cysteine, magnesium, calcium, copper,  and manganese) or red 6 

onion can increase  epigallocatechin-3-gallate (EGCG) level blood by stabilizing  EGCG  in the  7 

lumen in rats and humans [60]. Therefore, whole foods or a combination of several 8 

phytochemicals may enhance the health benefits of the phytochemical without increasing 9 

dosages. Furthermore, one food may contain multiple even hundreds phytochemicals (for 10 

instance, there are about 200 phytochemicals in pomegranate) [12] and one phytochemical may 11 

produce many metabolites in the body [51], and these phytochemicals may interact and produce 12 

more efficient beneficial effects than individual phytochemicals. Indeed, combinations of a 13 

couple of phytochemicals synergistically improve osteoporosis [61] and suppress obesity and 14 

oxidative stress [62]. In addition, a mixture of wild bilberry, cranberry, elderberry, raspberry, and 15 

strawberry exhibited higher antioxidant capacities when compared with the individual berries 16 

[63]. Breda et al proposed combinations of fruits and vegetables with high levels of 17 

phytochemicals to prevent chronic inflammation and chronic diseases [64]. In fact, the major 18 

characteristics of famous Mediterranean diet [9] and DASH diet [10] are combinations of high 19 

phytochemicals foods such as legumes, olive oil, wine, nuts as well as fruits and vegetables, and 20 

the typical Mediterranean diet contains 18 subclasses of phytochemicals and 290 different 21 

phytochemicals [65]. Therefore, combine two or more phytochemicals/foods is a reasonable way 22 

to bridge the gap between the high dosages of demands in cells/animals and the low levels in 23 
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humans by consuming the foods or supplements, and then reduce chronic inflammation and 1 

prevent chronic diseases in humans.  2 

 3 

2.3 Measurements of the effects of a combination of two or more phytochemicals  4 

           Combing two or more phytochemicals is not always enhancing the specific effect. In fact, 5 

combination of two or more active chemicals can produce an additive (combined effect is equal 6 

to the sum potency of individual components of the mixture), synergistic (combined effect is 7 

greater than the sum potency of individual components of the mixture), or antagonistic 8 

(combined effect is less than the sum potency of individual components of the mixture) effect 9 

[66]. To evaluate and interpret scientifically, in 2006 Chou et al [67] developed the Combination 10 

Index (CI): CI < 1 indicates synergy; CI =1 means addition; CI > 1 means antagonism. CI is 11 

calculated from the below equations. 12 

For binary combination of A and B at 50% activity: CI50 = CA/ IC50 (A) + CB/IC50 (B), where 13 

CI50 is Combination Index for the binary mixture at 50% activity; CA and CB is the proportional 14 

dose of compound A and compound B (respectively) in the mixture that shows 50% activity; 15 

IC50 (A) and IC50 (B) is the single dose of each compound A and B that provides 50% activity. 16 

         For n-phytochemical combination at x% inhibition: n�CI�� =	 �
��
�
���




���
 , where n(CI�) is 17 

a combination index for n compound mixture at x% activity; (D)j is the proportional dose of each 18 

compound in n- phytochemical mixture that shows x% activity; (Dx)j is the single dose of each 19 

compound that provides x% activity. 20 

 21 
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        Based on this CI equation, more and more software (CalcuSyn, Chalice, CompuSyn, 1 

Combenefit, Genedata Screener, SynergyFinder) have been developed and widely used to 2 

evaluate the interaction of a combination of chemicals [68]. 3 

         In this review, CI has been used in numerous articles to screen relevant combinations. CI 4 

and synergy based on the equation have been used, and only the phytochemicals/foods 5 

combinations having synergistic anti-inflammatory effects were discussed. 6 

 7 

3. Synergistic anti-inflammation effects of combined phytochemicals 8 

3.1 Combination of phytochemicals from the same foods 9 

          To overcome the controversy that whole food or raw extracts exert beneficial effects but 10 

the individual major phytochemicals from the food lose the health benefits, combining several 11 

phytochemicals from the same food may exert synergistic anti-inflammatory effects. Indeed, 12 

while resveratrol and quercetin can be found from many different foods/plants, both of them are 13 

detected from fresh grape skin (50–100 µg/g and 40 µg/g of resveratrol and quercetin 14 

respectively) and red wine (7–13 µM and 7.4 µM of resveratrol and quercetin respectively)  [69]. 15 

A recent study found that combination of resveratrol (120 mg/kg/day) and quercetin (240 16 

mg/kg/day) attenuates high fat diet-induced circulating inflammatory markers such as TNF-α, 17 

IL-6, and monocyte chemoattractant protein-1 (MCP-1) in rats [70]. The same author also 18 

reported that combination of resveratrol (2g/kg/day) and quercetin (2g/kg/day) synergistically 19 

reversed high fat diet-changed genes of inflammation/immunity compared to the individual 20 

chemicals in mice [71]. Similarly, two studies show that combined treatments of flavonoid 21 

quercetin and ω-3 polyunsaturated fatty acids (PUFA, available from grape seed) had synergistic 22 
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anti-inflammatory and antioxidant effects in rats [72, 73]. In a randomized double-masked 1 

controlled human studies, a combination of theobromine and (−)-epicatechin, two phytochemical 2 

from cocoa, synergistically lowered blood pressure and mobilized circulating immune cells [75]. 3 

Supplementation with 255 mg/day of a chokeberry flavonoid extract (about 25% anthocyanins, 4 

50% polymeric procyanidins and 9% phenolic acids) for 6 weeks significantly reduced hs-CRP 5 

by 23% in patients after myocardial infarction [74]. 6 

3.2 Combination of phytochemicals from different foods    7 

        Most combinations of phytochemicals having synergistic anti-inflammatory effects are 8 

combining phytochemicals from different foods/plants. For instance, green tea major 9 

phytochemical EGCG (40 nM) and soybean-derived genistein (2 μM) were combined at lower 10 

concentrations synergistically inhibits iNOS generation in a murine macrophage RAW264.7 [62]. 11 

Rinwa et al reported that co-administration of black pepper-derived piperine (20 mg/kg) with 12 

curcumin (100, 200 mg/kg) from spice turmeric synergistically lowered brain TNF-α and caspase 13 

3 levels compared to their effects alone in olfactory bulbectomy-induced depression rat [75]. 14 

This synergistic anti-inflammatory effects of combined curcumin and piperine have been 15 

confirmed in humans [76]. Daily administration of policosanol (majorly from sugar cane) and/or 16 

10-dehydrogingerdione at a dose level 10 mg/kg BW synergistically resulted in reducing sP-17 

selectin and interferon-gamma (IFN-γ) in dyslipidemic rabbits [77]. Combination of arctigenin 18 

and curcumin or curcumin and EGCG synergistically increased bax/bcl-2 ratio and inhibited NF-19 

KB levels compared to the individual chemicals, but the most efficient one is the combination of 20 

three chemicals together (arctigenin 1 μM, curcumin 5–10 μM, EGCG 40 μM respectively) [78]. 21 

Similarly, a combination of curcumin and resveratrol synergistically inhibited inflammation both  22 

in vitro and in vivo [79, 80]. Ka Lung Cheung et.al reported [81] that curcumin combined with 23 
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sulforaphane or phenethyl isothiocyanate synergistically inhibited LPS-induced inflammation in 1 

RAW 264.7 cells, which was evidenced by the decrease in inducible nitric oxide (iNOS), 2 

cyclooxygenase-2 (COX-2) protein expression and NO, TNF-α and IL-1 production in the 3 

medium. Synergistic interaction between Astragali Radix and Rehmanniae Radix in a Chinese 4 

herbal formula to promote diabetic wound healing [82]. 5 

          Another study found that  combination treatment with cocoa polyphenols and ω-3 fatty 6 

acids is a promising approach to inhibit inflammation and reduce cardiovascular risk factors 7 

associated with aging in humans [83]. Similarly, combinations of eicosapentaenoic acid  (EPA) 8 

(0.125 μM) with carnosic acid (0.2 μM) and lutein (0.2 μM) caused a synergistic inhibition of 9 

prostaglandin E2 (PGE2) release, IL-6 secretion, superoxide and NO production in microglia 10 

exposed to lipopolysaccharides (LPS) [84]. 1% curcumin or 0.02% limonin combined with fish 11 

oil synergistically suppressed CD4+ T-cell proliferation, IL-2 production and NF-KB activity in 12 

mice [85]. A combination of lycopene (7.5 µM), α-tocopherol (1.4 µM) or ascorbic acid (55 µM) 13 

significantly reduced gene expression and release of the pro-inflammatory cytokines TNF-α and 14 

IL-8 but increased anti-inflammatory cytokine IL-10 in human umbilical vein endothelial cell 15 

(HUVEC) cells, with  similar results of tomato ketchup extracts [86]. A 3-week randomized, 16 

double-blind, placebo-controlled, 2 × 2 factorial clinical study shows that combination of n-3 17 

PUFA (1.4 g/d) and plant sterols (2 g/d)  per day, synergistically reduced inflammatory markers 18 

such as hs-CRP (39%), TNF-α (10%), IL-6 (10.7% ) and leukotriene B4 (29.5%) but increased 19 

adiponectin by 29.5% [87]. Most importantly, the overall cardiovascular risk was reduced by 20 

22.6% (P = 0.006) in the combination group in hyperlipidemic individuals [87]. Lay Saw et.al 21 

[88] reported that combinations of curcumin and docosahexaenoic acid (DHA) or EPA have 22 

synergistic effects in suppressing LPS-stimulated NO, iNOS, COX-2 in RAW 264.7 cells. 23 
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          We randomly screened combinations (combined two of 20 phytochemicals at various 1 

concentrations) to select the combinations having synergistic anti-inflammatory effects using 2 

TNF-α-induced monocyte adhesion to endothelial cells. We found that combinations of 3 

resveratrol and luteolin (high contents from radicchio, peppers, and celeries) or luteolin and 4 

curcumin, at physiological achievable levels, synergistically inhibited TNF-α-induced monocyte 5 

adhesion to endothelial cells while the individual chemical did not have significant effects. 6 

Moreover, the synergistic anti-inflammatory effects of these two combinations were mediated 7 

through regulating intercellular adhesion molecule 1(ICAM-1), MCP-1 and nuclear factor kappa-8 

light-chain-enhancer of activated B cells (NF-kB) expressions both in in vitro and in vivo. 9 

Particularly, the CI values of these two combinations are around 0.7 in the in vitro studies (data 10 

not shown).   11 

      12 

4. Mechanisms of the synergistic anti-inflammation of combined 13 

phytochemicals 14 

4.1. Enhance the bioavailability/uptake of each other  15 

 16 

         Suganuma et al. found that (−)-epicatechin enhanced the incorporation of EGCG into a 17 

human lung cancer cell line PC-9 [89]. Genistein increased cytosolic EGCG by 2- to 5-fold 18 

compared with treatment with EGCG only in human colon cancer cells [90]. The same authors 19 

also reported that genistein increased the levels of EGCG in the small intestine and plasma 20 

following oral dosing of EGCG and genistein in mice [91]. Another study reported that the 21 

circulating level of EGCG was significantly increased by co-administrating nutrient mixture 22 
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because ascorbic acid, selenium, and other nutrients stabilize  EGCG  in the  lumen and help  to  1 

build up  its concentration in the intestine [60]. Similarly, combining DHA (10 μM) with 2 

curcumin (10 μM) significantly enhanced the curcumin uptake in human breast cancer SK-BR-3 3 

cells possibly through alteration of membrane lipid composition [92]. This has been observed for 4 

DHA in which it enhances the effects of other anti-cancer compounds 5-fluorouracil in colon 5 

cancer cells [93], celecoxib in prostate cancer cells [94], and doxorubicin in breast cancer 6 

patients [95]. Shoba et al [96] showed that co-administration of piperine and curcumin to humans 7 

and rats enhanced the bioavailability of curcumin by 2000% and 154%, respectively. This may 8 

be a result of the inhibition of the glucuronidation of curcumin by piperine because curcumin is 9 

heavily metabolized in the form of glucuronide conjugates prior to reaching the plasma and 10 

piperine is a well-known inhibitor of hepatic and intestinal glucuronidation [97]. The absorption 11 

rate of rosmarinic acid in Caco-2 cells is significantly boosted in the presence of luteolin and 12 

apigenin because luteolin and apigenin inhibit the efflux of rosmarinic acid by inhibiting ABC 13 

transporters [98]. Similarly, the bioavailability of quercetin is increased in the presence of 14 

proanthocyanidins via forming hydrogen bonds between these chemicals, which possibly 15 

contribute to improving the solubility and stability of quercetin [99].  A recent study reported 16 

that theobromine, a phytochemical from cocoa, synergistically enhanced the anti-hypertensive 17 

effect of (−)-epicatechin by increasing the circulating level of (−)-epicatechin in humans [59]. 18 

 19 

4.2 Synergistically boost antioxidant capacity 20 

 The critical roles of oxidative stress on the development of chronic inflammation and chronic 21 

diseases have been well recognized [100]. Oxidative stress is a state of imbalance between 22 

oxidants and antioxidants in favor of the oxidants, also called the reactive oxygen species (ROS), 23 
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includes free radicals such as O2•− (superoxide), ONOO•− (peroxynitrite) and OH• (hydroxyl), 1 

and non-radicals such as hydrogen peroxide (H2O2). Many individual phytochemicals are found 2 

to have the antioxidant capacity of directly scavenging ROS, metal chelating, tempering the 3 

mitochondrial respiratory chain, inhibiting certain enzymes as well as increasing endogenous 4 

antioxidants enzymes such as superoxide dismutase (SOD), catalase, and glutathione peroxidase 5 

both  in vitro [101] and in vivo [102]. At the whole food level, Sinha et al [103] tested the total 6 

antioxidant capacity (using four assays: ferric reducing antioxidant power, 2,2-diphenyl-1-7 

picrylhydrazyl, radical scavenging capacity, and oxygen radical absorbance capacity) of 8 

combinations between different foods. Within the same food category, 13% of the tested 9 

combinations showed synergistic effect, while across food categories 21% of the tested 10 

combinations demonstrated a synergistic effect. The strongest antioxidant capacity is the 11 

combination of raspberry and adzuki bean [103]. Fruit with fruit combination also synergistically 12 

increased antioxidants capacity [104].  For instance, the combination of orange, apple, grape, and 13 

blueberry displayed a synergistic effect in antioxidant activity because the median effective dose 14 

(EC50) of each fruit after combination was 5 times lower than the EC50 of each fruit alone [105]. 15 

Tomatoes contain a matrix of many bioactive components including vitamin C, vitamin E, other 16 

carotenoids (a-, beta-, gamma- carotene, lutein), and flavonoids, and mixtures of lycopene and 17 

vitamin E appear to have the greatest synergistic antioxidant activity [106].  18 

        The possible mechanisms of the synergistic enhancing antioxidant capacity are 1) protection 19 

each other because the combined phytochemicals act in different ways of antioxidation that 20 

enable them to protect each other from oxidative agents. For instance,  a chain breaking 21 

antioxidant scavenges free radicals to protect a singlet oxygen quencher from oxidation and that 22 

enables the latter to stay active longer to protect the former against singlet oxygen oxidation 23 
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[107]; 2) one antioxidant reacts with free radicals or singlet oxygen first to protect the partner 1 

from oxidants ; 3) one antioxidant is oxidized and becomes a free radical, and this free radical 2 

then receive electrons or hydrogen atoms from the other antioxidant to regenerate itself [108]; 4) 3 

the chelates metal ions of one antioxidant to allow the oxidant to remain active [109]; 5) the 4 

different orientation or position at the water/lipid interface or within the membrane of 5 

antioxidants facilitates synergistic interactions [110]; 6) formation of a very strong antioxidant. 6 

For example, phytochemical-enhanced heme oxygenase-1 (HO-1) makes  stronger antioxidant 7 

bilirubin and lead to a higher cellular antioxidant capacity [111]; 7) two or more above six  8 

mechanisms may be contributing to the synergistic antioxidants of combined foods or 9 

phytochemicals [109, 110, 112]. 10 

4.3 Target gut microbial profiles and gut integrity  11 

The gut microbiome, composed of bacteria, archaea, viruses, and eukaryotic microbes, 12 

play critical roles in maintaining healthy physiology and contributing to diseases [113]. 13 

Particularly, gut microbiome has critical influences on systemic immune and inflammatory 14 

components [114, 115]. The interactions between phytochemicals and gut microbiota have been 15 

reviewed [116, 117]. A combination of resveratrol (120 mg/kg/day) and quercetin (240 16 

mg/kg/day) attenuates high fat diet-induced circulating inflammatory markers such as TNF-α, 17 

IL-6 and MCP-1 in rats through regulating gut microbiota, particularly the ratio of 18 

Firmicutes/Bacteroidetes ratio and other groups, which are associated with inflammation and 19 

immune system  [118]. Interestingly, while resveratrol [119] and quercetin alone can regulate the 20 

Firmicutes/Bacteroidetes ratio, resveratrol can inhibit the growth of Enterococcus faecalis, and 21 

increase the growth of Lactobacillus and Bifidobacterium [119], but quercetin attenuates the 22 

growth of Erysipelotrichaceae, Bacillus, Eubacterium cylindroides in rats [120]. In addition, the 23 
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synergistic anti-inflammatory effect of a combination of resveratrol and quercetin may result 1 

from the protective effect of resveratrol on the mucosal barrier integrity [120] which can reduce 2 

the circulating endotoxin [121], one of the major stimulators of inflammation. Moreover, a 3 

combination of resveratrol and quercetin can up-regulate Blautia stercoris, Clostridium 4 

clariflavum, and Clostridium methylpentosum [120], which in turns the metabolism of quercetin 5 

and other phytochemicals and increased the bioavailabilities of these phytochemicals [117].  6 

 7 

4.4 Target different cells, inflammatory markers, and signaling pathways 8 

         Inflammation plays a central role in the etiology and development of several vascular 9 

diseases including atherosclerosis [122, 123] and ischaemic heart disease [124]. The endothelium 10 

is activated by abnormal shear stress, high glucose and result in an increase in permeability to 11 

lipoproteins and upregulation of adhesion receptors, and facilitate deposition of lipoproteins in 12 

the sub-endothelial space. Activated endothelial cells also promote the recruitment of circulating 13 

monocytes by secreting cell-adhesion molecules such as ICAM-1, P-selectin, MCP-1and 14 

VCAM-1, these endothelial cells and immune cells further produce chemokines and chemokine 15 

receptors such as chemokine (C-C motif) ligand 2 (CCL2), CCL5, CX3C and CCR2, CCR5 to 16 

facilitate the transmigration, differentiation and proliferation of monocytes, macrophages, 17 

eosinophils and neutrophils as well as T and B lymphocytes. These activated immune cells 18 

secrete more pro-inflammatory cytokines such IL-1, IL-4, IL-6, IL-10 and TNF-α, which in turn 19 

escalate the inflammation process and generate more ROS as well as NO to damage 20 

macromolecules DNA, proteins and oxidize more lipids [125, 126].  21 

         Resveratrol attenuated monocyte-to-macrophage differentiation, and monocyte infiltration 22 

in cells and mice via restoring intracellular glutathione (GSH) levels [127]. Dietary resveratrol 23 
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significantly lowered levels of mac-3-positive macrophages (a measure of the infiltration of 1 

activated macrophages) and reduced ICAM-1, VCAM-1 and MCP-1 expression/levels both in 2 

the aorta and plasma as well as reduced the activity of the transcriptional regulator NF-kB in 3 

aortic tissues of diabetic mice [128]. However, quercetin can increase the macrophages 4 

cholesterol efflux [129] and macrophage migration [130] as well as modulate M1/M2 5 

macrophage polarization [131]. These complementary effects of each chemical at least partly 6 

contribute to the synergistic anti-inflammatory effects of combined quercetin and resveratrol in 7 

animals [70, 71]. 8 

 9 

         While both curcumin [132] and piperine [133] can regulate common signaling pathways 10 

including NF-kB, 5' AMP-activated protein kinase (AMPK), mitogen-activated protein kinases 11 

(MAPKs)  and nuclear factor (erythroid-derived 2)-like 2(Nrf2)/HO-1, curcumin [134] can 12 

significantly increase the endothelial nitric oxide level, which is critical for the integrity of 13 

endothelial cells and the production of pro-inflammatory markers  ICAM-1, VCAM-1 and MCP-14 

1, but there is no report if piperine increases nitric oxide level in endothelial cells. Moreover, the 15 

piperine can significantly increase the curcumin bioavailability by inhibiting the hepatic and 16 

intestinal glucuronidation of curcumin [97]. Moreover, curcumin alone did not have an effect on 17 

the IL-10 level, but it significantly increased the piperine-increased IL-10 level in periodontal 18 

disease animal model after 15 days treatment [135]. Therefore, these common and different 19 

targets complementary contribute to the synergistic anti-inflammation of a combination of 20 

piperine and curcumin both in rats [75] and humans [76].  21 

 22 

4.5. Target same cells, inflammatory markers, and signaling pathways  23 
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         While each phytochemical has its specific interactions on cells, inflammatory markers, and 1 

signaling pathways as described above, two or more phytochemicals may also target the same 2 

immune and other cells, produce same inflammatory markers by the same pathways. The critical 3 

point of the shared targets by different phytochemicals is that a combination of two or more 4 

phytochemicals reaches the threshold the level of activating the shared pathway while the 5 

individual phytochemical cannot reach this level. This is particularly vital for the low circulating 6 

levels of phytochemicals by dietary intake.  7 

Because of the key roles in inflammation, macrophages are the major target of anti-8 

inflammation research, particularly in vitro studies. Indeed,  resveratrol [136], quercetin, 9 

kaempferol [137], curcumin [138], genistein [137], luteolin [139], EGCG [28], epicatechin and 10 

various food extracts [140, 141] have been shown in inhibiting pro-inflammatory molecules such 11 

as TNF-α, IL-1β, IL-6, PGE2 and NO in macrophages. Moreover,  resveratrol [142], luteolin 12 

[143], and EGCG [144] stimulate anti-inflammatory markers IL-10 and TGF-beta1 expression in 13 

macrophages. Quercetin [145] and kaempferol [146] as well as resveratrol [147] inhibits typical 14 

pro-inflammatory enzymes, iNOS and COX-2 and therefore decreases NO production via 15 

interference with the NF-κB pathway and iNOS/COX-2 induction in Raw264.7 cells. Moreover, 16 

luteolin, quercetin, and resveratrol [148, 149]  are able to stimulate the expression of the anti-17 

inflammatory cytokine IL-10 in macrophages. 18 

Another example is the endothelial cells, the frontline of interaction between 19 

environmental factors through circulating blood and inner body, interact with various immune 20 

cells to initiate the vascular inflammation. Interestingly, genistein [150, 151], EGCG [152], 21 

curcumin [153], resveratrol [154], quercetin [155], luteolin [156] and epicatechin [157] can 22 

maintain the integrity of endothelium and reduce adhesion molecules ICAM-1, VCAM-1 and 23 
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MCP-1 via regulating endothelial nitric oxide level. These reduced adhesion molecules further 1 

reduce the adhesion and migrations of monocytes to endothelial cells [132, 158].  2 

NF-kB pathway plays a critical role of chronic-inflammation because IL-1 and/or TNF-α-3 

activated NF-kB increase production of cytokines, chemokines, and adhesion molecules as well 4 

as leukocyte recruitment, and attenuating NF-kB pathway is a key approach to fight chronic 5 

inflammation [159]. Indeed, tea extracts and EGCG [160], genistein [161] and resveratrol [162] 6 

inhibit inflammation by diminishing  NF-kB cascade.  Irigenin (3-30μM) inhibits iNOS and 7 

COX2 expression via interference with NF-κB translocation and binding in Raw264.7 cells [163]. 8 

Quercetin (∼40 μM) has been reported to inhibit IP-10 and MIP-2 expression in intestinal 9 

epithelial cells via NF-κB modulation [164]. Curcumin inhibits IL-8, COX-2, and HO-1 10 

expression through inhibiting NF-kB in the airway epithelium [165, 166]. Chrysin, ellagic acid, 11 

genistein or EGCG at 50 μM reduced IκB-α phosphorylation and diminished IL-8 secretion in 12 

intestinal Caco-2 cells [167]. 13 

The transcription factor nuclear factor (erythroid-derived 2)-like 2(Nrf2), a  master 14 

regulator of redox homeostasis by regulating the expression and activity of enzymes NADPH, 15 

NAD(P)H quinone oxidoreductase 1, glutathione peroxidase, ferritin, heme oxygenase-1 (HO-1), 16 

also affects pro-inflammatory mediators including cytokines, COX-2 and iNOS. The most  17 

investigated  phytochemicals including epicatechin [168], resveratrol [169, 170], quercetin [171, 18 

172], curcumin [173, 174], EGCG [175], luteolin [176], genistein [177], piperine [178] and 19 

apigenin [179] exerts anti-oxidative and anti-inflammatory effects via regulating Nrf2/HO-1 20 

pathway [180].  21 
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Mitogen-activated protein kinases (MAPKs) are a family of serine/threonine protein 1 

kinases that mediate fundamental biological processes and cellular responses to external stress 2 

signals. Increased activity of MAPK, in particular, p38 MAPK, and their involvement in the 3 

regulation of the synthesis of inflammation mediators at the level of transcription and translation 4 

make them potential targets for anti-inflammatory therapeutics. The anti-inflammatory activity 5 

of curcumin has been associated with a reduction in the activation of p38 MAPK but not c-Jun 6 

N-terminal kinases (JNKs)  in vivo [181], and resveratrol attenuates inflammation by regulating 7 

p38 MAPK [182, 183], therefore, the mutual target p38MAPK mediates the reductions COX-2, 8 

IL-6 and IL-8 production by combination of curcumin and resveratrol in normal prostate 9 

epithelial [184]. Similarly, the anti-inflammatory actions of quercetin [185], EGCG [186]  and 10 

curcumin [187] were also associated with activation of the AMPK pathway, suggesting that 11 

activation of AMPK may serve as a key mechanism of the phytochemicals anti-inflammatory 12 

effects. 13 

 14 

AMPKα1/sirtuin 1 (SIRT1) signaling pathway exerts its anti‑inflammatory effects both in 15 

endothelial cells [32], adipocytes [188] and macrophages [189], and AMPKα1 inhibits the 16 

activation of the NF‑κB system [190]. Activation of AMPKα1 suppresses the synthesis of 17 

pro‑inflammatory cytokines, such as IL‑6 and IL‑8 in adipocytes [191]. A combination of 18 

resveratrol (120 mg/kg/day) and quercetin (240 mg/kg/day) attenuates high fat diet-induced 19 

circulating inflammatory markers such as TNF-α, IL-6, and MCP-1 through regulating 20 

AMPKα1/SIRT1 signaling pathway in rats [70]. This synergistic effect of combined resveratrol 21 
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and quercetin at least results from the shared AMPKα1/SIRT1 signaling pathway because both 1 

resveratrol [192] and quercetin [193] can regulate this pathway alone. 2 

 3 

The complicated interactions between endothelial cells and immune cells and the 4 

interactions between these major signaling pathways may contribute to the synergistic anti-5 

inflammatory effects of combined phytochemicals.  For instance, both resveratrol and quercetin 6 

dose-dependently inhibited thrombin-activated endothelial cells, neutrophil migration via 7 

regulating MAPK, pMAPK, and JNKs molecules [194], which may partly interpret how the 8 

combination of resveratrol and quercetin synergistically reverses high fat diet-induced chronic 9 

inflammation in animals [70, 71]. Similarly, a combination of curcumin and sulforaphane 10 

synergistically up-regulated HO-1invovling Nrf2, NF-kB and activated activator protein 1 (AP-1) 11 

signals and  lead to a higher cellular antioxidant capacity by the formation of the very strong 12 

antioxidant bilirubin [111], and therefore reduced iNOS and COX-2 protein expression and their 13 

related inflammatory molecules [81]. Combination of sulforaphane and EGCG synergistically 14 

enhanced antioxidant capacity and AP-1, a transcription factor regulates gene expression of 15 

inflammation [195]. For instance, both Nrf2/HO-1 pathways and NF-KB pathways mediate the 16 

anti-inflammatory effect of the combination of curcumin and resveratrol [196].   17 

 18 

5. Conclusions 19 

          The synergistic anti-inflammatory effects of combined phytochemicals may be the results 20 

of regulating multiple pathways, multiple cells, and inflammatory markers. For the case of 21 

combination of curcumin and piperine, in colon and liver, piperine inhibits the hepatic and 22 

intestinal glucuronidation of curcumin and increases the curcumin bioavailability, at the same 23 
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time, the gut microbiome metabolize these chemicals and chemicals, in turn, affect the profiles 1 

of the microbiome and finally promote the levels of chemicals in the blood and tissues. After 2 

interacting with endothelial cells and various immune cells, the chemicals may directly scavenge 3 

the elevated ROS, increase endogenous antioxidants/enzymes such as SOD and/or promotes the 4 

Nrf2/HO-1 system to fight oxidative stress. These reduced ROS and/or the chemicals directly 5 

further regulates AMPK/SIRT1 or MAPK cascades to attenuate NF-kB pathway. The attenuated 6 

NF-kB molecules then deregulate the transcription and translation of pro-inflammatory markers 7 

ICAM-1, VCAM-1, MCP-1, TNF-α, IL-1β, IL-6, PGE2 and NO as well as upregulate anti-8 

inflammatory molecules such as IL-10 level and endothelial NO, which in turn suppress the 9 

proliferation, migration of immune cells and maintain the integrity of endothelial cells to further 10 

reduce the production of pro-inflammatory markers and eventually inhibit chronic inflammation 11 

(see hypothetical mechanisms using vascular inflammation model as Figure 1).  This review 12 

provides clues to boost more studies to combine several phytochemicals/foods to reduce chronic 13 

inflammation and prevent chronic diseases in humans. 14 
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Figure legends 1 

 2 

Fig. 1. Hypothetical mechanisms of the synergistic anti-inflammatory effect of combined 3 

phytochemicals using vascular inflammation as a model. Combination of phytochemicals A 4 

and B exerts synergistic anti-inflammatory effects through multiple mechanisms: B increases 5 

bioavailability/uptake of A in the blood and tissues by regulating A’s metabolism in the gut and 6 

liver. At the same time, the interactions between the gut microbiome and phytochemicals result 7 

in the changes of the profiles of the microbiome and promotion of the levels of phytochemicals. 8 

After interacting with endothelial cells and various immune cells, phytochemicals may directly 9 

scavenge the elevated ROS, increase endogenous antioxidants/enzymes such as SOD and/or 10 

promotes the Nrf2/HO-1 system to fight oxidative stress. These reduced ROS and/or the 11 

chemicals directly further regulates AMPK/SIRT1, Nrf2/HO-1 and/or MAPK cascades to 12 

attenuate NF-kB pathway in the cytosol. The attenuated NF-kB molecules then transfer into 13 

nuclear to regulate the transcription and translation of pro-inflammatory markers ICAM-1, 14 

VCAM-1, MCP-1, TNF-α, IL-8, IFNβ as well as upregulate anti-inflammatory molecules such 15 

as IL-10 level, Nrf2/HO-1, and endothelial NO. These changed molecules, in turn, suppress the 16 

proliferation, migration of immune cells and maintain the integrity of endothelial cells to further 17 

reduce the production of pro-inflammatory markers and eventually inhibit chronic inflammation 18 

in vasculature.  19 
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