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FUNDAMENTAL RESULTS ON s-CLOSURES

WILLIAM D. TAYLOR

Abstract. This paper establishes the fundamental properties of the s-closures, a recently introduced family
of closure operations on ideals of rings of positive characteristic. The behavior of the s-closure of homo-
geneous ideals in graded rings is studied, and criteria are given for when the s-closure of an ideal can be

described exactly in terms of its tight closure and rational powers. Sufficient conditions are established for
the weak s-closure to equal to the s-closure. A generalization of the Briançon-Skoda theorem is given which
compares any two different s-closures applied to powers of the same ideal.

1. Introduction

In [Tay18], the author introduced a family of closure operations on the ideals of noetherian rings of positive
characteristic which lie between and interpolate between integral closure and tight closure of those ideals.
For a real number s ≥ 1, the weak s-closure of an ideal I in a ring R is the set of x ∈ R such that there
exists c ∈ R, not in any minimal prime, such that cxq ∈ I⌈sq⌉ + I [q] for all sufficiently high powers q of the
characteristic of R. We denote the weak s-closure of I by I{s}. The s-closure of I is the ideal obtained by
applying the weak s-closure repeatedly until the ideal stabilizes.

The s-closures are related to the s-multiplicity function, which similarly interpolates between the Hilbert-
Samuel and Hilbert-Kunz multiplicities of an ideal. The s-multiplicity of an m-primary ideal I in a local
ring (R,m) is

es(I) = lim
q→∞

λ
(

R/(I⌈sq⌉ + I [q])
)

qdHs(d)
,

where Hs(d) is a normalizing factor depending only on s and the Krull dimension d of R.
The strongest result on the subject of s-closures in [Tay18] is Theorem 4.6, which states that if I and J

are m-primary ideals of a ring R and I{s} = J{s}, then es(I) = es(J). The same theorem gives a partial
converse: if R is an F -finite complete domain, and I ⊆ J , and es(I) = es(J), then I{s} = J{s}. Furthermore,
in this case the weak s-closure is the s-closure, i.e. I{s} = Icls . In this paper, we show in Theorem 4.7 that
the domain hypothesis for the converse direction may be weakened to an unmixed hypothesis.

This paper’s purpose is to develop significantly more of the theory of s-closures, particularly to establish
the results that will be essential to further study. The three main goals of this paper are to understand the
structure of the s-closure in the graded case, identify situations in which I{s} = Icls , and to compare the
s-closures for different values of s using a generalization of the Briançon-Skoda theorem.

Here we record those results in the paper we believe will be most relevant to future work. In some cases
the statement of the full theorem is slightly stronger but more technical.

Lemma (4.9). If R is a ring of characteristic p > 0, I ⊆ R is an ideal, and 1 ≤ t < s, then
(

I{t}
){s}

= I{t}.

Theorem (4.6). Let R be a ring of characteristic p > 0, I ⊆ R an ideal, and s ≥ 1. For any x ∈ R, x ∈ I{s}

if and only if x ∈ (IR/p)
{s}

for all p ∈ MinR.

Theorem (2.9, 3.4). Let R be a ring of characteristic p > 0, I ⊆ R an ideal, and s ≥ 1 a rational number.
We have that I∗ + Is ⊆ I{s}, where Is is the sth rational power of I. Furthermore, equality holds if I is a
monomial ideal in a polynomial or semigroup ring over a field.

Theorem (3.1, 3.2, 3.3). Let R be an N-graded ring of characteristic p > 0, I ⊆ R a homogeneous ideal,
x ∈ R a homogeneous element, and s ≥ 1.

(1) I{s} and Icls are homogeneous ideals.
(2) If all generators of I have degree at least d and x ∈ I{s} \ I∗, then deg x ≥ sd.
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2 WILLIAM D. TAYLOR

(3) If (R,m) is graded local, I is m-primary and generated in degree at most d, and deg x ≥ sd, then
x ∈ I{s}.

Theorem (4.16). For the following classes of ideals, I{s} = Icls .

(1) Monomial ideals in polynomial rings, or more generally affine semigroup rings, over a field
(2) Principal ideals
(3) Powers of R+, where R is an N-graded ring generated in degree 1 over R0 and R+ is generated by

all elements of positive degree.

Theorem (5.1). Let R be a ring, 1 ≤ t < s, and I an ideal of R. If r ≥ (µ(I)−1)(s−t)
t(s−1) , then for all n ∈ N,

(In+r)
{t} ⊆ (In)

{s}
.

An outline of this paper is as follows. In section 2, we give the basic definitions and results on powers of
ideals that we use throughout the paper. We also record some results about rational powers of ideals, and
prove a characterization of them which is particularly relevant to us. In section 3, we consider the s-closure
of homogeneous ideals in graded rings. We obtain degree conditions which can be used in some cases to
check the membership or non-membership of a homogeneous element in the s-closure of a homogeneous
ideal. Section 4 considers the question of when I{s} = Icls , and gives some sufficient conditions on I for
equality to hold. Section 5 includes our generalization of the Briançon-Skoda theorem which compares any
two s-closures.

2. Preliminaries

Throughout this paper, all rings R are assumed to be commutative and noetherian, and the notation R◦

indicates the set of all elements of R not in any minimal prime ideal. For an ideal I, we use µ(I) for the
minimal number of generators of I. When we work with a ring of positive characteristic p, the symbols
q and q′ stand for positive integer powers of p. For an ideal I in a ring of characteristic p > 0, the ideal
I [q] = (f q | f ∈ I) is called the qth Frobenius power of I, and is generated as an ideal by the qth powers of
any set of generators of I.

We are interested in the relationships between ordinary and Frobenius powers of ideals. In particular, we
rely on the following result.

Lemma 2.1. If R is a ring of characteristic p > 0, h ≥ 0 is a real number, I is an ideal of R, and q is a

power of p, then I⌈h⌉ ⊆
(

I [q]
)⌊h/q−µ(I)+1⌋ ⊆

(

I [q]
)⌈h/q−µ(I)⌉

Proof. Let x1, . . . , xµ(I) be a set of generators for I. For any generator x of I⌈h⌉, there exist ai, bi ∈ N such
that bi < q,

∑

aiq + bi = ⌈h⌉, and

x =

µ(I)
∏

i=1

xqai+bi
i =

µ(I)
∏

i=1

(xq
i )

ai ·
µ(I)
∏

i=1

xbi
i ∈

(

I [q]
)

∑
i
ai

.

Furthermore,

µ(I)
∑

i=1

ai =

µ(I)
∑

i=1

qai + bi − bi
q

=
⌈h⌉
q

−
∑

i

bi
q

≥ ⌈h⌉
q

− µ(I)
q − 1

q
>

h

q
− µ(I)

Therefore, since
∑

i ai is an integer,
∑

i ai ≥ ⌊h/q − µ(I) + 1⌋.
The last containment is implied by the fact that ⌈α⌉ ≤ ⌊α+ 1⌋ for all real α. �

Mixed Powers and s-Closure. Given a ring R and ideal I, the integral closure I of I is the set of all
x ∈ R such that there exists c ∈ R◦ such that cxn ∈ In for infinitely many positive integers n, or equivalently
all sufficiently large integers n [HS06, Corollary 6.8.12]. When R has characteristic p > 0, the tight closure
I∗ of I is the set of all x ∈ R such that there exists c ∈ R◦ such that cxq ∈ I [q] for all q ≫ 0. The similarity
between these two descriptions suggests a method of interpolating between the two closures. We begin by
considering a set of ideals which interpolate between ordinary powers and Frobenius powers of an ideal.

Definition 2.2. Let R be a ring of characteristic p > 0, s ≥ 1 a real number, and I an ideal of R. For any
q, the (s, q) mixed power of I is

I(s,q) = I⌈sq⌉ + I [q].
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Note that I(1,q) = Iq, and that if s ≥ µ(I), then I(s,q) = I [q]. Furthermore, we have that if s > t, then
I(s,q) ⊆ I(t,q). Therefore, the ideals I(s,q) form a decreasing family of ideals parameterized by s. In [Tay18],
the author used the mixed powers defined above to construct a family of closures which lie between integral
closure and tight closure.

Definition 2.3. [Tay18, Definition 4.1] Let R be a ring of characteristic p > 0, s ≥ 1 a real number, and
I an ideal of R. The weak s-closure of I, denoted I{s}, is the set of all x ∈ R such that there exists c ∈ R
such that for all q ≫ 0, cxq ∈ I(s,q).

It is easy to see that I{s} is an ideal containing I, and that if I ⊆ J then I{s} ⊆ J{s}, but it is not
clear that the weak s-closure is idempotent. Thus, to construct a true closure operation, we apply the weak
s-closure repeatedly.

Definition 2.4. [Tay18, Definition 4.3] Let R be a ring of characteristic p > 0, s ≥ 1, and I an ideal of R.
The s-closure of I, denoted Icls , is the ideal at which the following increasing chain of ideals stabilizes:

I ⊆ I{s} ⊆
(

I{s}
){s}

⊆
(

(

I{s}
){s}

){s}

· · · .

It is not known whether I{s} = Icls for all s and ideals I. The condition that I{s} = Icls is explored in
Section 4.

Since s > t implies I(s,q) ⊆ I(t,q), we have that if s > t, then I{s} ⊆ I{t} and Icls ⊆ Iclt . Moreover, since
I [q] ⊆ I(s,q) ⊆ Iq for all ideals I, s ≥ 1 and q, we have that I∗ ⊆ I{s} ⊆ Icls ⊆ I for all s and I.

Furthermore, when s is very small or very large, some of the containments above become equalities.

Theorem 2.5. If R is a ring of characteristic p > 0 and I an ideal of R, then the following hold.

(1) I{1} = Icl1 = I.
(2) If either s ≥ µ(I) or s > µ(J), where J is a reduction of I, then I{s} = I∗. In particular, if R is

local with infinite residue field and s > dimR, then I{s} = Icls = I∗.

Proof. (1) If x ∈ I{1}, then there exists c ∈ R◦ such that cxq ∈ I(1,q) = Iq for all q ≫ 0, and hence x ∈ I. If
x ∈ I, then there exists c ∈ R◦ such that cxn ∈ In for all n ≫ 0, and hence cxq ∈ Iq = I(1,q) for all q ≫ 0,
and so x ∈ I{1}. Therefore I{1} = I, and since this holds for all ideals I, we have that weak 1-closure and
tight closure are the same operation, hence weak 1-closure is idempotent, i.e. I{1} = Icl1 .

(2) If s ≥ µ(I) and x ∈ I{s}, then there exists c ∈ R◦ such that cxq ∈ I(s,q) = I [q] for all q ≫ 0, and
therefore x ∈ I∗.

Suppose s > µ(J), where J is a reduction of I with reduction number w and s > µ(J). Since I∗ ⊆ I{s}

we need only show that I{s} ⊆ I∗. Let x ∈ I{s} and let c ∈ R◦ such that cxq ∈ I(s,q) for q ≫ 0. Now, for
large enough q, we have that w

q ≤ s− µ(J), and so by Lemma 2.1,

cxq ∈ I(s,q) = I⌈sq⌉ + I [q] ⊆ J⌈sq−w⌉ + I [q] ⊆
(

J [q]
)⌊s−w/q−µ(J)+1⌋

+ I [q] ⊆ J [q] + I [q] = I [q].

Therefore x ∈ I∗.
If R is local with infinite residue field, then every ideal has a reduction generated by at most dimR

elements. Hence in this case, if s > dimR, then weak s-closure and tight closure are the same operation,
and so in particular weak s-closure is idempotent. Hence for any ideal I, Icls = I{s} = I∗. �

Rational Powers. The notion of rational powers of ideals is related to that of s-closure. In particular,
rational powers will be used to describe the s-closures of certain kinds of ideals in graded rings in Theorem 3.4.
The presentation here is based on [HS06, Section 10.5].

Definition 2.6. Let R be a ring, I ⊆ R an ideal, and α ∈ Q≥0. The αth rational power of I, denoted Iα,

is the set of all x ∈ R such that xb ∈ Ia, where α = a
b , a, b ∈ N.

The ideal Iα does not depend on the choice of representation of α as a fraction. The most important
property of rational powers that we will use is the following.

Theorem 2.7. ([HS06, Propositon 10.5.5]) Let R be a ring and I ⊆ R an ideal of positive height. There
exists e ∈ N such that for all α ∈ Q≥0, Iα = I⌈αe⌉/e.
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We can use Theorem 2.7 to give an alternate description of Iα which simultaneously relates to the s-closure
and doesn’t depend on the representation of α.

Lemma 2.8. Let R be a ring of any characteristic, I an ideal of positive height, and α ∈ Q≥0.

(1) If x ∈ Iα, then there exists c ∈ R◦ such that for all n ≫ N, cxn ∈ I⌈αn⌉.
(2) If there exists c ∈ R◦ and m ∈ N>0 such that for infinitely many n, cxmn ∈ I⌈αm

n⌉, then x ∈ Iα.

Proof. (1) Suppose α = a
b with a, b ∈ N and x ∈ Iα, so that xb ∈ Ia. Therefore there exists c′ ∈ R◦ such

that for all k ≫ 0, c′xbk ∈ Iak. Let c′′ ∈ Ia ∩R◦ and n ≫ 0. We have that

c′c′′xb⌊n/b⌋ ∈ c′′Ia⌊n/b⌋ ⊆ Ia⌊n/b⌋+a ⊆ I⌈na/b⌉ = I⌈nα⌉

So, setting c = c′c′′ and noting that xn ∈ (xb⌊n/b⌋), we’re done.
(2) Suppose that there exists c ∈ R◦ and m ∈ N>0 such that for infinitely many n, cxmn ∈ I⌈αm

n⌉. Let
e ∈ N such that for any β ∈ Q≥0, Iβ = I⌈βe⌉/e. Choose a, k ∈ N such that a

mk < α and
⌈

a
mk e

⌉

= ⌈αe⌉. Now,
for infinitely many n ≥ k, we have that

c
(

xmk
)mn−k

= cxmn ∈ I⌈αm
n⌉ ⊆ I⌈(a/m

k)mn⌉ = Iam
n−k

.

Therefore, xmk ∈ Ia, and so x ∈ Ia/mk = Iα. �

This description of the rational powers gives us another bound for the s-closure of an ideal.

Theorem 2.9. Let R be a ring of characteristic p > 0 and I ⊆ R an ideal of positive height. If s ≥ 1 is a
rational number then I∗ + Is ⊆ I{s}.

Proof. That I∗ ⊆ I{s} is already known. Suppose x ∈ Is. By Lemma 2.8, there exists c ∈ R◦ such that for
all q, cxq ∈ I⌈sq⌉ ⊆ I(s,q). Therefore x ∈ I{s}. �

3. Graded Rings

Here we establish the essential facts about the s-closure of homogeneous ideals in graded rings. Throughout
this section, for a semigroup G, a G-graded ring R =

⊕

g∈G Rg, and x ∈ R, we write xg for the homogeneous

component of x lying in Rg. If I ⊆ R is an ideal, we write [I]g for I ∩Rg. If g = (g1, g2, . . . , gn) ∈ Zn, then
we write ‖g‖∞ = max{|gi| | i = 1, . . . , n}. We begin with an expected result.

Theorem 3.1. If R is a Zn-graded ring of characteristic p > 0, I is a homogeneous ideal of R, and s ≥ 1,
then I{s} and Icls are homogeneous ideals. Furthermore, if R is a domain and x ∈ I{s}, there exists a
homogeneous element c such that cxq ∈ I(s,q) for all q ≫ 0.

Proof. Let x =
∑

j∈Zn xj ∈ I{s} and c =
∑

i∈Zn ci ∈ R◦ such that cxq ∈ I(s,q) for all q ≫ 0. Let

i∗ = max{‖i − i′‖∞ | ci, ci′ 6= 0}. If cix
q
j 6= 0 and ci′x

q
j′ 6= 0 have the same degree, then i + qj = i′ + qj′,

and so i− i′ = q(j′ − j). If in addition q > i∗, we must have that j = j′ and i = i′. Therefore each nonzero
homogeneous component of cxq is cix

q
j for some i, j. Since I is homogeneous, so is I(s,q), and therefore for

q ≫ 0, we have that cix
q
j ∈ I(s,q). Hence, for each j, cxq

j ∈ I(s,q), which shows that each xj ∈ I{s}. If R is a

domain, then for each nonzero ci, cix
q ∈ I(s,q) for q ≫ 0, which shows the last statement.

Since I{s} is homogeneous, so is
(

I{s}
){s}

, and each time we take the weak s-closure we preserve homo-

geneity. After a finite number of steps we will reach Icls , which shows that Icls is homogeneous. �

Our primary goal will be to establish necessary and sufficient degree conditions for a homogeneous ring
element to belong to the s-closure of an ideal based on the degrees of its generators.

Theorem 3.2. Let I be a homogeneous ideal in an Nn-graded ring R. If x ∈ I{s} \ I∗ is a homogeneous
element, then deg x ≥ sδ, where δ = (δ1, . . . , δn) ∈ Nn and δi = min{di | deg f = (d1, . . . , dn), 0 6= f ∈ I}.
Proof. Let x ∈ I{s}, deg x = (m1, . . . ,mn), and assume that deg x 6≥ sδ. Let c ∈ R◦ be homogeneous such
that for all q ≫ 0, cxq ∈ I(s,q). For any such q, there exist homogeneous yq ∈ I⌈sq⌉ and zq ∈ I [q], each of

the same degree as cxq , such that cxq = yq + zq. Since yq ∈ I⌈sq⌉, if yq 6= 0 then deg yq ≥ δ⌈sq⌉, and since
deg x 6≥ sδ, for large enough q we have that deg(cxq) = q · deg x + deg c 6≥ δ⌈sq⌉. Therefore yq = 0 and

cxq ∈ I [q] for all q ≫ 0, and hence x ∈ I∗. �
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When the ideal we consider is primary to the homogeneous maximal ideal, we may conclude that all
elements above a certain degree are in I{s}.

Theorem 3.3. Let k be a field of characteristic p > 0, (R,m) an Nn-graded local finitely generated k-algebra,
I an m-primary homogeneous ideal generated in degree at most δ, and s ≥ 1. If x ∈ R is a homogeneous
element, deg x 6= (0, . . . , 0), and deg x ≥ sδ, then x ∈ I{s}.

Proof. If ht I = 0, then since I is m-primary, R is a dimension 0 local ring. In this case, all elements of m
are nilpotent, and so since deg x 6= (0, . . . , 0), x is nilpotent and hence in I{s}. Therefore, we may assume
that ht I > 0.

We reduce to the case that R is N-graded by “flattening” the grading on R. Precisely, for m ∈ N, let
Rm =

⊕

|g|1=m Rg, where the sum is taken over all degrees in the original grading whose sum of coordinates

is equal to m. Under this new grading, we still have that deg x ≥ sδ, so we may assume R is N-graded.
Suppose that δ > 0. Let ∆ = deg x ≥ sδ, and let f1, . . . , fm be a set of homogeneous generators of I with

deg fi ≤ δ. Since I is m-primary, we have that k[f1, . . . , fm] ⊆ R is integral, and so there exists an equation
of integral dependence for xδ over k[f1, . . . , fm]:

(1)
(

xδ
)N

+ a1
(

xδ
)N−1

+ · · ·+ aN−1x
δ + aN = 0.

we may choose the ai homogeneous, and so deg ai = ∆δi for each i. Since each ai is a polynomial in the fi,

we have that ai ∈ I∆i for all i. Therefore xδ ∈ I∆, and so x ∈ I∆/δ. By Theorem 2.9, x ∈ I{∆/δ} ⊆ I{s}.
Now suppose that δ = 0, so that I is generated by its degree 0 piece I ∩R0. In this case, for all n ∈ N we

have that I ∩Rn = (I ∩R0)Rn. Since I is m-primary,

∞ > λR (R/I) =
∑

n∈N

λR0

(

Rn

I ∩Rn

)

=
∑

n∈N

λR0

(

Rn

(I ∩R0)Rn

)

Therefore, there exists N ∈ N such that if n ≥ N , (I ∩ R0)Rn = Rn, and by Nakayama’s Lemma, Rn = 0.
Hence any homogeneous x ∈ R with deg x ≥ 1 is nilpotent, and so x ∈ I{s}. �

For certain kinds of ideals in graded rings we can describe the s-closure completely in terms of rational
powers.

Theorem 3.4. Let R be a ring of characteristic p > 0 which is G-graded for some semigroup G, I ⊆ R a
homogeneous ideal of positive height, and s ≥ 1 rational. If, for every q ≫ 0 and g ∈ G, either [I⌈sq⌉]g ⊆
[I [q]]g or [I [q]]g ⊆ [I⌈sq⌉]g, then I{s} = I∗ + Is.

Proof. By Theorem 2.9, I∗ + Is ⊆ I{s}. Let x ∈ I{s} be homogeneous, and let c ∈ R◦ be homogeneous such
that for all q ≫ 0, cxq ∈ I(s,q) = I⌈sq⌉ + I [q]. For all sufficiently large q, since cxq is a homogeneous element,
we have that cxq ∈ I⌈sq⌉ or cxq ∈ I [q]. If x /∈ I∗, then for infinitely many q, cxq /∈ I [q]. Hence for infinitely
many q, cxq ∈ I⌈sq⌉. By Lemma 2.8, x ∈ Is. Hence x is in either I∗ or Is, so x ∈ I∗ + Is. �

Situations where we might apply Theorem 3.4 include homogeneous ideals in rings with monomial-like
gradings, in which each graded piece is a 1-dimensional vector space over k. Examples of these include
monomial ideals in polynomial rings and toric rings.

4. When is The Weak s-closure a Closure?

In this section we consider a collection of conditions an ideal I may have relating to its various s-closures.
In particular, we are concerned with when the s-closure is an honest closure itself, a property we refer to
as (IDs) below. Before defining the properties, we look at an example to show that, a priori, there may be
infinitely many distinct s-closures for a given ideal. More precisely, this example shows that it is possible for
the quotient of two s-closures to have infinite length. The example is based on [EY17, Example 2.2]

Example 4.1. Let R be a domain of characteristic p > 0, I ⊆ R an ideal, and s > t ≥ 1 such that
I{s} 6= I{t}. Let S = R[X ], J = IS, and z ∈ I{t} \ I{s}. We have that

J{t}

J{s}
⊇ J{s} + Sz

J{s}
∼= Sz

J{s} ∩ Sz
∼= S

(

J{s} :S z
)
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We claim that zXn /∈ J{s} for any n ∈ N. If there were such an n, then since R[X ] is naturally N-graded,
there would be an element rXm for some 0 6= r ∈ R and m ∈ N such that, for all sufficiently large powers q
of p,

rzqXm+nq = rXm · (zXn)
q ∈ J (s,q) = I(s,q)S.

Therefore, for all large q, rzq ∈ I(s,q), and so z ∈ I{s}, a contradiction. Hence Xn /∈
(

J{s} :S z
)

for any n,
and so

S ⊇
(

J{s} :S z
)

+ (X) ⊇
(

J{s} :S z
)

+ (X2) ⊇
(

J{s} :S z
)

+ (X3) ⊇ · · ·

is an infinite chain of descending ideals each of which contain
(

J{s} :S z
)

. Therefore λ
(

S/
(

J{s} :S z
))

= ∞,

and so λ
(

J{t}/J{s}
)

= ∞.

Property (IDs): When Weak s-Closure is Equal to s-Closure. As given in Definition 2.3, the weak
s-closure is not obviously a closure. We now consider classes of ideals for which the two notions align.

Definition 4.2. Let R be a ring of characteristic p > 0 and s ≥ 1 a real number. We say an ideal I of R
has property (IDs) if the weak s-closure is idempotent on I, i.e. I{s} = Icls . We say the ring R has property
(IDs) if every ideal of R has property (IDs).

Since weak 1-closure is integral closure, any ring R of positive characteristic has property (ID1). If,
further, (R,m) is local with infinite residue field, then R has property (IDs) for any s > dimR, since in this
case weak s-closure is tight closure.

Property (SMs): When s-Closure is Characterized by s-Multiplicity. In this section we restrict
our attention to ideals of finite colength in local or graded local rings, homogeneous in the graded local
case. Membership in such ideals’ tight or integral closure can be tested using the Hilbert-Kunz or Hilbert-
Samuel multiplicity, under certain conditions. The analogous multiplicity function for s-closure is called
s-multiplicity.

Definition 4.3. [Tay18, Definition 1.3] Let (R,m) be a local (resp. graded local) ring of characteristic p > 0
and dimension d, I ⊆ R an m-primary (homogeneous) ideal, and s ≥ 1. The s-multiplicity of I is

es(I) = lim
q→∞

λ
(

R/I(s,q)
)

qdHs(d)
,

where Hs(d) = vol{x ∈ [0, 1]d | |x|1 ≤ s}.
Originally, the s-multiplicity was defined only for local rings, but the graded local case is completely

analogous.
By [Tay18, Theorem 4.6], if x ∈ I{s}, then es(I + (x)) = es(I). When the converse also holds, the

s-multiplicity becomes a powerful tool for studying the s-closure.

Definition 4.4. Let (R,m) be a (graded) local ring of characteristic p > 0 and s ≥ 1 a real number. We
say an m-primary (homogeneous) ideal I of R has property (SMs) if one can test membership in the weak
s-closure of I using s-multiplicity, i.e. if es(I + (x)) = es(I) then x ∈ I{s}. We say the ring R has property
(SMs) if every m-primary (homogeneous) ideal of R has property (SMs).

Property (SMs) is stronger than property (IDs).

Theorem 4.5. Let (R,m) be a (graded) local ring of characteristic p > 0 and I a (homogeneous) m-primary
ideal of R. If I has property (SMs), then I has property (IDs).

Proof. By [Tay18, Theorem 4.6], if x ∈ Icls , then es(I + (x)) = es(I), and since I has property (SMs), we
have that x ∈ I{s}. Therefore I{s} = Icls . �

The following theorem shows that membership in the weak s-closure can be tested modulo minimal primes,
which we will use to show that a large class of ideals has (SMs). The proof of this result is based closely on
the proof of part (e) of [BH93, Proposition 10.1.2]. In the following proof, the notation x always indicates
the image of x in the currently considered quotient ring

Theorem 4.6. Let R be a ring of characteristic p > 0, I ⊆ R an ideal, and s ≥ 1. For any x ∈ R, x ∈ I{s}

if and only if x ∈ (IR/p)
{s}

for all p ∈ MinR.
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Proof. If x ∈ I{s}, then there exists c ∈ R◦ such that for all q ≫ 0, cxq ∈ I(s,q), and therefore for any

minimal prime p, c · xq = cxq ∈ I(s,q)R/p = (IR/p)(s,q). Hence x ∈ (IR/p)
{s}

.

Let p1, p2 . . . , pm be the minimal primes of R, suppose that for every i, x ∈ (IR/pi)
{s}

, and choose ci /∈ pi

such that cixq ∈ (IR/pi)
(s,q)

for all q ≫ 0. Therefore cix
q ∈ I(s,q) + pi for all i and all q ≫ 0. We may

assume that ci ∈ R◦; if not, by prime avoidance we may choose c′i such that c′i ∈ pj if and only if ci /∈ pj .

Therefore ci + c′i ∈ R◦, and furthermore, since c′i ∈ pi, we have that (ci + c′i)x
q ∈ I(s,q) + pi for all q ≫ 0.

Thus we may replace ci with ci + c′i.

For each i, let di ∈
(

∏

j 6=i pj

)

\ pi, and let d =
∑

i cidi. We have that d ∈ R◦. Now p1p2 · · · pm ⊆
√
0, so

let q′ be large enough that (p1p2 · · · pm)[q
′] = 0. For all q ≫ 0, and for any i, we have that

(cidi)
q′xqq′ = (cix

q)
q′
dq

′

i ∈
(

I(s,q) + pi

)[q′]





∏

j 6=i

p
[q′]
i



 =

(

(

I(s,q)
)[q′]

+ p
[q′]
i

)





∏

j 6=i

p
[q′]
i



 ⊆ I(s,qq
′).

Therefore, dq
′

xqq′ ∈ I(s,qq
′) for all q ≫ 0, and so x ∈ I{s}. �

Theorem 4.6 allows us to generalize [Tay18, Theorem 4.6] to the non-domain case.

Theorem 4.7. Let (R,m) be a (graded) local ring of characteristic p > 0 and I a (homogeneous) m-primary
ideal. If R is F -finite, complete, and unmixed, then I has property (SMs).

Proof. Suppose that x ∈ R such that es(I + (x)) = es(I). By the Associativity Formula for s-multiplicity,
[Tay18, Corollary 3.10], we have that

∑

p∈AsshR

eR/p
s ((I + (x))R/p)λRp

(Rp) = es(I + (x)) = es(I) =
∑

p∈AsshR

eR/p
s (IR/p)λRp

(Rp) .

For each p ∈ AsshR, e
R/p
s ((I + (x))R/p) ≤ e

R/p
s (IR/p), and so we have equality for all such p. Since R/p is

an F -finite complete domain for all p ∈ AsshR, x ∈ (IR/p)
{s}

by [Tay18, Theorem 4.6]. Since R is unmixed,
AsshR = MinR, and so by Theorem 4.6, we have that x ∈ I{s}. Therefore, I has property (SMs). �

Property (LCs): When Weak s-Closure is Left-Continuous. Next we consider the condition that an
s-closure is the intersection of all larger s-closures. This property is enjoyed by rational powers, which are
related to s-closures.

Definition 4.8. Let R be a ring of characteristic p > 0 and s > 1. We say an ideal I of R has property
(LCs) if the weak s-closure is left-continuous on R, i.e. I{s} =

⋂

t<s I
{t}. We say the ring R has property

(LCs) if every ideal of R has property (LCs).

The containment I{s} ⊆ ⋂

t<s I
{t} always holds since the s-closure is monotonic in s. In fact, we can say

more, and the following Lemma will likely be important in later development of the theory of s-closures.

Lemma 4.9. If R is a ring of characteristic p > 0, I ⊆ R is an ideal, and 1 ≤ t < s, then
(

I{t}
){s}

= I{t}.

Proof. Let J = I{t}. We have that J ⊆ J{s}, since this holds for all ideals. Now let x ∈ J{s}, let c ∈ R◦

such that cxq ∈ J (s,q) for all q ≫ 0, and let d ∈ R◦ such that dJ [q] ⊆ I(t,q) for all q ≫ 0. Finally, let q′ be
such that q′(s− t) ≥ µ(J). For q ≫ 0, we have that

cd⌈sq
′−µ(J)⌉xqq′ ∈ d⌈sq

′−µ(J)⌉J (s,qq′) = d⌈sq
′−µ(J)⌉J⌈sqq′⌉ + d⌈sq

′−µ(J)⌉J [qq′]

Now ⌈sq′ − µ(J)⌉ ≥ q′t ≥ 1, so d⌈sq
′−µ(J)⌉J [qq′] ⊆ I [qq

′] ⊆ I(t,qq
′). Also, for q ≫ 0 we have that

d⌈sq
′−µ(J)⌉J⌈sqq′⌉ ⊆ d⌈sq

′−µ(J)⌉
(

J [q]
)⌈sq′−µ(J)⌉

=
(

dJ [q]
)⌈sq′−µ(J)⌉

⊆
(

I(t,q)
)⌈sq′−µ(J)⌉

⊆ (Iq)
⌈sq′−µ(J)⌉

.

Now q⌈sq′ − µ(I)⌉ ≥ q(sq′ − µ(I)) ≥ q(tq′), and so

d⌈sq
′−µ(J)⌉J⌈sqq′⌉ ⊆ (Iq)

⌈sq′−µ(J)⌉ ⊆ I⌈tqq
′⌉ ⊆ I(t,qq

′).

Hence, we have that for all q ≫ 0, cd⌈sq
′−µ(J)⌉xqq′ ∈ I(t,qq

′), so x ∈ I{t} = J . Thus J{s} ⊆ J . �

Theorem 4.10. If R is a ring of characteristic p > 0, s > 1, and I an ideal of R, then Icls ⊆ ⋂

t<s I
{t}. In

particular, if I has (LCs) then I has (IDs).
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Proof. Let J ⊆ ⋂

t<s I
{t} be any ideal. For any t < s, we have that J ⊆ I{t}, and hence J{s} ⊆

(

I{t}
){s}

=

I{t} by Lemma 4.9. Therefore J{s} ⊆ ⋂

t<s I
{t}.

Since I ⊆ ⋂

t<s I
{t}, and Icls is obtained by applying the weak s-closure a finite number of times to I, we

have that Icls ⊆
⋂

t<s I
{t}. �

Property (LSs): When s-Closure is Left-Stable. In this section we consider intervals of s on which the
weak s-closures of an ideal are constant. Computations have shown that for many easily-understood ideals,
the s-multiplicity is left-stable, i.e. that for a given s and ideal I, I{t} = I{s} for all t slightly smaller than
s. This is the strongest condition that we give a label to in this paper. Before defining it, however, we give
a weaker result that gives some insight into the intervals of s on which I has same s-closure.

Theorem 4.11. Let R be a ring of characteristic p > 0 and s ≥ 1. There exists ǫ > 0 such that I{t} = I{s+ǫ}

for any t ∈ (s, s+ ǫ].

Proof. Consider the chain of ideals

I{s+1} ⊆ I{s+1/2} ⊆ I{s+1/3} ⊆ · · · .
Since R is noetherian, there exists m ∈ N such that for all n ≥ m, I{s+1/n} = I{s+1/m}. Hence, for any
t ∈ (s, s+1/m], there exists some n such that s+1/n < t, and so I{s+1/m} ⊆ I{t} ⊆ I{s+1/n} = I{s+1/m}. �

Theorem 4.11 inspires a definition of jumping numbers for s-closure similar to that for test ideals.

Definition 4.12. Let R be a ring of characteristic p > 0 and I an ideal of R. We say that a real number
s ≥ 1 is an s-jumping number for I if, for all t > s, I{s} 6= I{t}.

Theorem 4.11 implies that jumping numbers cannot accumulate above a given s ≥ 1. That is, for any
s there is an ǫ > 0 such that there are no s-jumping numbers in (s, s + ǫ). However, we do not have a
theorem disproving the existence of such accumulations below s. Therefore, we define a property based on
that condition, which we show holds for some well-understood classes of ideals.

Definition 4.13. Let R be a ring of characteristic p > 0 and s > 1 a real number. We say an ideal I of R
has property (LSs) if the weak s-closure of I is left-stable, i.e. there exists ǫ > 0 such that I{t} = I{s} for
all s− ǫ < t < s. We say the ring R has property (LSs) if every ideal of R has property (LSs).

Left-stability is a very strong condition, implying left-continuity and therefore idempotence.

Theorem 4.14. If R is a ring of characteristic p > 0, s > 1, I is an ideal of R, and I has (LSs), then I
has (LCs).

Proof. Since I has (LSs), there exists u < s such that I{u} = I{s}. This implies that
⋂

t<s I
{t} ⊆ I{u} =

I{s}. �

Left-stability is enjoyed by ideals that can be described by their rational powers.

Theorem 4.15. If R is a ring of characteristic p > 0 and I is an ideal of R such that I{s} = I∗ + Is for all
s ∈ Q, then I has (LSs) for all s > 1.

Proof. By Theorem 2.7, there exists e ∈ N such that Iα = I⌈αe⌉/e for all α ∈ Q>0. Now let t ≥ 1 be any real

number such that ⌈se⌉−1
e < t < s. Finally, let α, β ∈ Q such that

⌈se⌉ − 1

e
< α ≤ t < s ≤ β ≤ ⌈se⌉

e
.

We have that

I{t} ⊆ I{α} = I∗ + Iα = I∗ + Iβ = I{β} ⊆ I{s}.

Therefore I{t} = I{s}. Hence I has (LSs). �

Corollary 4.16. The following classes of ideals have property (LSs) for all s > 1. All rings mentioned have
characteristic p > 0.

(1) Monomial ideals in polynomial rings over a field.
(2) Monomial ideals in affine semigroup rings over a field.
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(3) Homogeneous ideals of positive height in graded rings in which each graded piece has length 1 over
the zeroth piece.

(4) Powers of R+, where R is an N-graded ring, generated in degree 1 over R0, and R+ is the ideal
generated by all homogeneous elements of degree 1.

(5) Principal ideals.

Proof. Items (1) and (2) follow from part (3) when we take the monomial Nn-grading. Thus, let R =
⊕

g∈G Rg be a graded ring such that for all g ∈ G, Rg has length 1 over R0. Let I ⊆ R be a homogeneous

ideal, and fix g ∈ G. For any q, [I [q]]g is an R0-submodule of Rg, and therefore [I [q]]g = Rg or [I [q]]g = 0.

For any rational s > 1, in the first case we have that [I⌈sq⌉]g ⊆ [I [q]]g and in the second we have that

[I [q]]g ⊆ [I⌈sq⌉]g. Thus, by Theorem 3.4, I{s} = I∗ + Is. Hence by Theorem 4.15, I has property (LSs) for
all s. This proves (3).

For item (4), let R be an N-graded ring generated in degree 1 as an R0-algebra. Let x1, . . . , xt be a set
of degree 1 generators for R as an R0-algebra, and let R+ = (x1, . . . , xt). Finally, let n ∈ N and I = (R+)

n.
Fix g ∈ N, q > 0, and s ∈ Q>0. If g ≥ n⌈sq⌉, then any x ∈ Rg can be written as x = rxa1

1 · · ·xat

t , where

r ∈ R0 and
∑

i ai ≥ n⌈sq⌉. Therefore, x ∈ (R+)
n⌈sq⌉ = I⌈sq⌉. Hence, if g ≥ n⌈sq⌉, [I⌈sq⌉]g = Rg. On the

other hand, any homogeneous element of I⌈sq⌉ must have degree at least n⌈sq⌉ since I is generated in degree
n. Therefore, if g < n⌈sq⌉, then [I⌈sq⌉]g = 0. Hence for any g, [I⌈sq⌉]g ⊆ [I [q]]g or [I [q]]g ⊆ [I⌈sq⌉]g, and by

Theorem 3.4, I{s} = I∗ + Is. Hence by Theorem 4.15, I has property (LSs) for all s.
Item (5) follows from the fact that for a principal ideal I, I∗ = I, and so for all s, I = I∗ ⊆ I{s} ⊆ I,

hence I{s} = I. �

Relationships Between the Properties. The various implications between the properties that we have
defined can be summarized in the following figure.

Left-Stable Left-Continuous Idempotent

(R,m) F -finite, unmixed,
complete, I m-primary

Testable using s-Multiplicity

Theorem 4.14 Theorem 4.10

Theorem 4.7

(R,m) local,
I m-primary
Theorem 4.5

5. A Briançon-Skoda Theorem for s-Closure

The classical Briançon-Skoda Theorem describes containments between the integral closures of powers of
an ideal and the powers themselves. In particular, when I is an ideal in a regular ring, we have that for all

n ∈ N, In+µ(I)−1 ⊆ In. The statement is generalized by Hochster and Huneke in [HH90, Theorem 5.4], who

show that even in singular rings we have In+µ(I)−1 ⊆ (In)∗ for all n ∈ N. This, combined with their proof
that in regular rings all ideals are tightly closed, gives a new proof of the Briançon-Skoda Theorem. In this
section we develop a generalization of the Briançon-Skoda Theorem in positive characteristic.

Theorem 5.1. Let R be a ring of characteristic p > 0, 1 ≤ t < s, and I an ideal of R. If r ≥ (µ(I)−1)(s−t)
t(s−1) ,

then for all n ∈ N, (In+r)
{t} ⊆ (In)

{s}
.

Proof. We consider two cases. First, suppose that n < µ(I)−1
s−1 . This implies that r ≥ (µ(I)−1)(s−t)

t(s−1) > n(s−t)
t .

If q is large enough that n(s−t)
t + n

tq ≤ r, then

(n+ r)⌈tq⌉ ≥ ntq + rtq ≥ ntq + n(s− t)q + n = nsq + n ≥ n⌈sq⌉.
Therefore, for all q ≫ 0,

(

In+r
)(t,q)

= I(n+r)⌈tq⌉ +
(

In+r
)[q] ⊆ In⌈sq⌉ + (In)

[q]
= (In)

(s,q)
.
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Therefore (In+r)
{t} ⊆ (In)

{s}
.

Now suppose that n ≥ µ(I)−1
s−1 . In this case we have that

(n+ r)t = n+ n(t− 1) + rt ≥ n+
(µ(I)− 1)(t− 1)

s− 1
+

(µ(I)− 1)(s− t)

s− 1
= n+ µ(I)− 1

and hence, for any q,
(

In+r
)(t,q)

= I(n+r)⌈tq⌉ +
(

In+r
)[q] ⊆ I(n+µ(I)−1)q + (In)

[q] ⊆ (In)
[q]

.

Therefore, (In+r)
{t} ⊆ (In)∗ ⊆ (In){s}. �

Theorem 5.1 recovers the classical Briançon-Skoda Theorem by taking t = 1 and r = µ(I) − 1. In
particular, we note that Theroem 5.1 does not give us a stronger version of the theorem in the case that one
of our closures is integral closure.

We record two immediate corollaries, one of the statement of Theorem 5.1 and one of its proof.

Corollary 5.2. Suppose (R,m) is a local ring with dimension d, characteristic p > 0, and infinite residue

field, let I ⊆ R be an ideal with reduction number w, and let 1 ≤ t < s. If r ≥ (d−1)(s−t)
t(s−1) , then for all n ∈ N,

(In+r+w)
{t} ⊆ (In)

{s}
.

Proof. Since R has infinite residue field, I has a minimal reduction J with reduction number w and generated
by d elements. Therefore,

(

In+r+w
){s} ⊆

(

Jn+r
){t} ⊆ (Jn)

{s} ⊆ (In)
{s}

. �

Corollary 5.3. Let R be a ring of characteristic p > 0, 1 ≤ s, and I an ideal of R. If n ∈ N and

r ≥ 1
s (µ(I)− 1− n(s− 1)), then (In+r)

{s} ⊆ (In)
∗
. In particular, if n ≥ µ(I)−1

s−1 , then (In)
{s}

= (In)
∗
.

One way of interpreting Corollary 5.3 is that asymptotically, as we take powers of an ideal, each s-closure
with s > 1 eventually collapses and becomes tight closure. In general, for smaller s, we must take ever higher
powers of I to realize this collapse; i.e., there is in general no uniform power beyond which every s-closure
for s > 1 is tight closure, as the following example shows.

Example 5.4. Let I = (x3, y3) ⊆ k[x, y], where k is a field of characteristic p > 0. By Theorem 3.4, for

any rational s, (In)
{s}

= (In)∗ + (In)s = In + Ins. Now Ins is generated by all monomials with degree at
least 3ns. Thus, if 1 < s < 1 + 1

3n , we have that deg(x3n−1y2) = 3n + 1 = 3n
(

1 + 1
3n

)

≥ 3ns. Therefore

x3n−1y2 ∈ (In)
{s}

, but x3n−1y2 /∈ In = (In)∗.
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