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Helium is the second most abundant element in the universe after hydrogen and is a 29 

major constituent of gas-giant planets in our Solar System. Early theoretical models 30 

predicted helium to be among the most readily-detectable species in the atmospheres of 31 

exoplanets, especially in extended and escaping atmospheres1. However, searches for 32 

helium have until now been unsuccessful2. Here we present the first detection of helium 33 

on an exoplanet, at a confidence level of 4.5σ . We measured the near-infrared 34 

transmission spectrum of the warm gas giant WASP-107b3 with the Hubble Space 35 

Telescope and identified the narrow absorption feature of excited, metastable helium at 36 

10,833 angstroms. The amplitude of the feature, in transit depth, is 0.049±0.011% in a 37 

bandpass of 98 angstroms, which is more than 5 times greater than that which could be 38 

caused by nominal stellar chromospheric activity. The large absorption signal suggests 39 

that WASP-107b has an extended atmosphere that is eroding at a total rate of 1010- 40 

3×1011 g s-1 (0.1-4% of its total mass per Gyr), and may have a comet-like tail of gas 41 

shaped by radiation pressure.  42 

WASP-107b is one of the lowest density planets known, with a radius similar to that of 43 

Jupiter (0.94±0.02RJ) and a much lower mass (0.12±0.01MJ)3. It orbits an active K6 dwarf 44 

every 5.7 days at a distance of 0.055±0.001 astronomical units. On 31 May 2017, we 45 

observed a primary transit of WASP-107b with the Wide Field Camera 3 (WFC3) on board 46 

the Hubble Space Telescope (HST). Our observations lasted 7 hours and we acquired 84 47 

time-series spectra with the G102 grism, which covers the 8,000 – 11,000 Å wavelength 48 

range. Further details of the observations and data reduction can be found in Methods. 49 

Each spectrum was integrated along the wavelength axis to first produce a ‘white’ light curve 50 

(Extended Data Fig. 1). In addition to the planetary transit signal, the resulting time series 51 

was affected by instrumental systematics caused by electron trapping in the WFC3 detector. 52 

We fitted the white light curve with a planetary transit model14 multiplied by a linear baseline 53 



trend and a physically-motivated WFC3 systematics model15. For the planetary transit model, 54 

we allowed the planet-to-star radius ratio (Rp/Rs) and the mid-transit time (T0) to vary as free 55 

parameters, while holding the ratio of orbital distance to stellar radius (a/Rs), inclination (i), 56 

eccentricity (e), and period (P), fixed to previously determined values6,16. We assumed a 57 

quadratic limb-darkening profile for the star, holding the coefficients fixed to values 58 

determined from a model stellar spectrum17. Further details of this fit are provided in 59 

Methods. The results of the fit are reported in Extended Data Table 1, and Extended Data Fig. 60 

1. 61 

Two sets of spectroscopic light curves were constructed by summing each spectrum into 62 

broad- and narrow-band bins. The first set consisted of 9 broad-band channels spanning the 63 

8,770-11,360 Å wavelength range, while the second set comprised 20 overlapping, narrow-64 

band channels spanning the 10,580-11,070 Å wavelength range. The narrow-band channels 65 

cover the helium absorption triplet at 10,833 Å (vacuum wavelength – the air wavelength of 66 

this line is 10,830 Å). The widths of the broadband and narrowband channels were 294 Å (12 67 

pixel columns) and 98 Å (4 pixel columns), respectively. We fitted both sets of spectroscopic 68 

light curves using the same approach as described above for the white light curve. However, 69 

for the planetary transit signals, we only allowed Rp/Rs to vary as a free parameter, while 70 

holding t0, a/Rs, i, e, and P fixed to those reported in Extended Data Table 1. We fixed limb 71 

darkening coefficients in a similar way to the white light curve fit. Additional details of the 72 

fitting procedure are given in Methods. The inferred values for the transit depth, (Rp/Rs)2, in 73 

each wavelength channel are shown in Fig. 1 and Extended Data Table 2. These results 74 

constitute the atmospheric transmission spectrum.  75 

The broadband transmission spectrum is consistent with a previous transmission spectrum for 76 

WASP-107b obtained using the WFC3 G141 grism, which covers the 11,000-16,000 Å 77 

wavelength range18. The latter exhibits a muted water absorption band centred at 14,000 Å, 78 



with an otherwise flat spectrum implying an opaque cloud deck. After applying a correction 79 

for stellar activity variations between the G102 and G141 observation epochs (see Methods), 80 

the G102 spectrum aligns with the cloud deck level inferred from the G141 spectrum (Fig. 1).  81 

The helium triplet has an expected width of approximately 3 Å, whereas the resolution of the 82 

G102 grism is 67 Å (~3 pixels) at 10,400 Å19. Therefore, to make a finely-sampled 83 

transmission spectrum, we shifted each of the 20 narrowband channels by 1 pixel with 84 

respect to the adjacent channel along the wavelength axis. The narrowband transmission 85 

spectrum peaked when the binning was most closely centred at 10,833 Å (Figure 3), as 86 

expected if absorption by helium in the planetary atmosphere was responsible for the signal. 87 

To estimate the amplitude of the absorption feature, we focussed on 5 non-overlapping 88 

channels centred on 10,833 Å. All but one of the channels were consistent with a baseline 89 

transit depth level of 2.056 ± 0.005 %. The single exception is the channel centred on the 90 

10,833 Å helium triplet, for which the transit is visibly deeper than for the surrounding 91 

channels (Fig. 2), and we obtained (Rp/Rs)2=2.105 ± 0.010 %. We ruled out various 92 

alternative explanations for the signal, including other absorbing species, helium in the 93 

Earth’s atmosphere, and the occultation of inhomogeneities in the stellar chromosphere and 94 

photosphere (see Methods). 95 

The metastable helium probed by 10,833 Å absorption forms high up, at µbar – mbar 96 

pressures in planetary atmospheres, where stellar XUV radiation is absorbed12. On the other 97 

hand, absorption of the neighbouring continuum occurs deeper in planetary atmospheres, at 98 

mbar - bar pressures. Therefore, to interpret the broadband (continuum) and narrowband 99 

(~10,833 Å) transmission spectra, we used separate lower- and upper- atmosphere models. 100 

For the combined G102 and G141 broadband spectrum (with the 10,775 - 10,873 Å range 101 

removed), we performed an atmospheric retrieval analysis using our one-dimensional 102 

radiative transfer code, ATMO20,21 (see Methods and Extended Data Table 3). We found the 103 



broadband data were well explained by a grey absorbing cloud deck across the full 8,780-104 

11,370 Å wavelength range, in addition to H2O absorption. We obtained a volume mixing 105 

ratio for H2O of 5×10-3 – 4×10-2, consistent with previous estimations18.  106 

We investigated the narrowband transmission spectrum using two numerical models for the 107 

upper atmosphere of WASP-107b (see Methods). Our first, 1-D model22 solves for the level 108 

populations of a H/He Parker wind, and suggests that WASP-107b is losing its atmosphere at 109 

a rate of 1010 – 3×1011 g s-1, corresponding to ~0.1 - 4% of its total mass every billion years. 110 

Our second, 3-D model8,23 suggests an escape rate for metastable helium of 106-107 g/s (for 111 

comparison, the 1-D model gives an escape rate of ~105 g s-1 for 23S helium). It also suggests 112 

that stellar radiation pressure blows away the escaping helium atoms so swiftly as to form a 113 

tail nearly aligned with the star-planet axis, which explains the lack of post-transit occultation 114 

detected in our data (Figure 2). The radiation pressure should also blue-shift the absorption 115 

signature over hundreds of km s-1, which may be observable at higher spectral resolution 116 

(Fig. 4). 117 

Atmospheric mass-loss can substantially alter the bulk composition of a planet. For example, 118 

there is evidence that atmospheric escape is responsible for the observed dearth of highly-119 

irradiated super-Earth and sub-Neptune exoplanets with sizes between 1.6 and 2 Earth radii24-120 

28. In order to calibrate theories of planet formation, and assess whether these planets have 121 

substantial H/He envelopes, it is necessary to understand how atmospheric mass-loss affects 122 

the subsequent evolution of bodies that start with significant atmospheres. Empirical 123 

constraints such as the one presented here for WASP-107b are therefore crucial for retracing 124 

evolutionary pathways and interpreting the present day population of planets29.  125 

To date, extended atmospheres have been detected on three exoplanets by targeting the 126 

Lyman-alpha line in the UV4,7,8, and on one exoplanet using the optical H-alpha line11. Our 127 

observations of WASP-107b in the 10,833Å line provide not only the first detection of 128 



helium on an exoplanet, but also the first detection of an extended exoplanet atmosphere at 129 

infrared wavelengths. This result demonstrates a new method to study extended atmospheres 130 

which is complementary to the two hydrogen lines.  131 

We note that observations targeting the 10,833 Å helium triplet are possible from the ground 132 

with existing high-resolution infrared spectrographs. In the near future, high signal-to-noise 133 

observations will also be possible with the James Webb Space Telescope at a spectral 134 

resolution of Δλ~4 Å (~110 kms-1).  135 

 136 

Online Content Methods, along with any additional Extended Data display items and Source Data are available 137 

in the online version of the paper; references unique to those section appear only in the online paper. 138 
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 234 

Figure 1 | Combined near-infrared transmission spectrum for WASP-107b with helium 235 

absorption feature. (a) Data plotted on a linear scale. Points with 1σ error bars are from a 236 

previous study18 and this work, both corrected for stellar activity (see Methods). The solid 237 

purple line is the best fit lower atmosphere retrieval model from MCMC fits, and the shaded 238 

pink areas encompass 68%, 95% and 99.7% of the MCMC samples. The gold line is the best-239 

fit helium 10,830 Å absorption profile from our 1-D escaping atmosphere model. (b) Same as 240 

(a), on a log scale. The dashed blue line shows the Roche radius. 241 

 242 

a

b



 243 

Figure 2 | Transit light curves for three 98 Å -wide spectroscopic channels. (a) Dark blue 244 

points are from the channel centred on the He I 10,833 Å line, gold and light blue points are 245 

from the two adjacent channels. All have 1σ error bars. The transit depth of the blue light 246 

curve is visibly deeper. (b) Binned difference between the 10,775 – 10,873 Å channel light 247 

curve, and the average of the two adjacent channels (blue points, 1σ errors), highlighting the 248 

excess absorption. It is well explained by both our 1D (green line) and 3D (red line) escaping 249 

atmosphere models.  250 

 251 



 252 

Figure 3 | Narrow-band transmission spectrum of WASP-107b, centred on 10,833 Å. 253 

Each spectroscopic channel has been shifted along one pixel from the last. Non-overlapping 254 

bins are highlighted in blue. Error bars are 1σ. The peak of the spectrum coincides with the 255 

23S helium absorption line at 10,833 Å. 256 



 257 

Figure 4 | Results from two models of WASP-107b’s upper atmosphere. (a) Best-fit 258 

absorption profiles of the helium 10,833Å triplet line from the 1-D (blue), and 3-D (orange) 259 

models. Both reproduce the measured excess absorption of 0.049±0.011% in a 98 Å bin. 260 

Higher-resolution observations will resolve the profile shape, and further constrain the 261 

velocity of the planetary wind. (b) Radial number density profiles of different atmospheric 262 

species from the 1-D model, shaded blue regions are 1σ errors. (c) Top-down view of the 263 

planetary system from the 3-D model, showing a comet-like tail of 23S helium shaped by 264 

stellar radiation pressure. 265 



Methods 266 

Observations & data reduction 267 

We observed one transit of WASP-107b with WFC3 in spectroscopic mode, using the G102 268 

grism (GO-14916, P.I. Spake). This covers the approximate wavelength range of 8,780 – 269 

11,370 Å. We used forward spatial scanning to spread the spectra over ~60 pixels in the 270 

cross-dispersion direction with the SPARS10, NSAMP=15 setup, giving exposure times of 271 

~103 seconds. This allowed 17 exposures per HST orbit. The observations lasted for five 272 

HST orbits, with two orbits pre-transit, one during the transit, and one post-transit, allowing 273 

us to precisely constrain the out-of-transit baseline.  274 

The raw frames were first reduced with the automatic CalWF3 pipeline. The 1-D spectra 275 

were then extracted following standard methods30: building up flux counts by summing the 276 

difference between successive non-destructive reads. We removed the background from each 277 

read difference by subtracting the median of a box of pixels uncontaminated by the spectrum. 278 

We found the flux-weighted centre of each scan and set to zero all pixels more than 75 rows 279 

away from the centre in the cross-dispersion axis, which removes many cosmic rays. The 280 

remaining cosmic rays were flagged by finding 4σ outliers relative to the median along the 281 

dispersion direction. We replaced each flagged pixel with the median along the dispersion 282 

direction, re-scaled to the count rate of the cross-dispersion column. Since the scans are 283 

visibly tilted from the dispersion axis, we used the IRAF package Apall to fit the trace of the 284 

2-D scans and extract 1-D spectra. We found the wavelength solutions by cross-correlating 285 

the extracted spectra with an ATLAS model stellar spectrum17 which most closely matches 286 

WASP-107 (Teff = 4,500 K, log g = 4.5 cgs) modulated by the G102 grism throughput. 287 

Following standard methods18 we interpolated each spectrum onto the wavelength range of 288 

the first to account for shifts in the dispersion axis over time. 289 

White light curve analysis 290 



We extracted the white light curve by summing the total counts of each 1-D spectrum. In 291 

order to constrain the mid-time of the transit, we fit the resulting time-series with the 292 

BATMAN transit model14, multiplied by a linear baseline trend and a physically-motivated 293 

systematics model. For the latter, we employed the RECTE model15, which accounts for two 294 

populations of charge traps in individual pixels of the detector and successfully replicates the 295 

ramp-like features that dominate the systematics. The RECTE model allows us to keep the 296 

first orbit of observations in our fit. The free parameters of our final model were: the planet-297 

to-star radius ratio, Rp/Rs; mid-transit time, T0; the gradient and y-intercept of the linear 298 

background trend, c1 and c0 respectively; four parameters for the charge trapping model - the 299 

initial number of populated slow and fast traps spop and fpop, and the changes in the two 300 

populations between each orbit, δs and δf; and an uncertainty rescaling factor, β for the 301 

expected photon noise.  302 

We fixed a/Rs, i, e, and the period using estimates from Kepler light curves16. To model the 303 

stellar limb darkening we fitted a four-parameter non-linear limb darkening law31 to the 304 

ATLAS stellar model described above.  305 

Because the shape of the ramp-like systematics depends on the count level of the illuminated 306 

pixels, the RECTE model requires the `intrinsic' count rate of a pixel (i.e. the actual flux 307 

received from the star) in order to model the charge trapping. To create a template of the 308 

intrinsic count rate, we median-combined four raw images from the end of the second orbit. 309 

Here the charge traps appear completely filled, and the ramp shape has tapered to a flat line. 310 

It is possible to model each illuminated pixel, however, for a large scan this is 311 

computationally expensive. Additionally, the ramp profile is washed out by systematics that 312 

are introduced by telescope jittering and pointing drift. Instead we divided the scan into 313 

columns of width 10 pixels along the dispersion axis and fed the median count profiles into 314 

the model.  315 



We used the Markov chain Monte Carlo (MCMC) package emcee32 to marginalise over the 316 

parameter space of the model likelihood distribution. We used 80 walkers and ran chains for 317 

8000 steps, discarding the first 800 as burn-in before combining the walker chains into a 318 

single chain. The best-fit model and residuals are shown in Extended Figure 1, with the 319 

parameter values and 1σ uncertainties reported in Extended Data Table 1. Although WASP-320 

107b orbits an active star we see no evidence of star spot crossings. For context, only five 321 

spot-crossing events are reported in 10 Kepler transits16,33. 322 

Broadband spectroscopic light curve fit 323 

We binned each spectrum into nine spectroscopic channels across the 8,780-11,370 Å 324 

wavelength range, each spanning 10-12 pixels on the detector. The resulting lightcurves are 325 

shown in Extended Data Figure 2. Since the throughput of the G102 grism is wavelength-326 

dependent, the shape of the charge-trapping ramp in each spectroscopic light curve is 327 

different. Therefore, for each channel we simultaneously fit for a transit model multiplied by 328 

a linear baseline trend and a charge-trap model. To make a template of the intrinsic counts, 329 

we took the median cross-dispersion-direction profile of each channel in the same four raw 330 

images as used in the white light curve fit. We fixed T0 to the value found from the white 331 

light curve fit. Similarly to the white light curve fit, we fixed the orbital parameters to those 332 

derived from Kepler light curves16, and wavelength-dependent limb darkening coefficients 333 

from the ATLAS model. Therefore, for each channel the fitted parameters were  334 

RP/Rs, c1, c0, spop, fpop, δs, δf, and β. We ran MCMC fits for each light curve with emcee, with 335 

80 walkers, 80,000 steps and a burn-in of 800.  336 

As a test, we also ran additional fits for the spectroscopic light curves with the stellar limb 337 

darkening coefficients as free parameters. This produced results that were consistent to within 338 

1σ with those obtained from the analysis in which the limb darkening coefficients were held 339 

fixed. 340 



We show the resulting spectroscopic light curves divided by their best-fit systematics models 341 

in Extended Data Figure 2, along with their residuals. Extended Data Table 2 reports our 342 

median values for the transit depth, (RP/Rs)2, with 1σ uncertainties calculated from the 343 

MCMC chains. We also list the root mean square (RMS) of the residuals for each channel, 344 

which range between 1.038-1.198 times the photon noise.  345 

Narrowband spectroscopic light curve fit around 10,830 angstroms 346 

To target the 10,833 Å helium triplet, we binned the spectra from 10,590 to 11,150 Å into 347 

twenty narrowband channels. Each channel spanned 4 pixels on the detector, which is a 348 

compromise between the low instrument resolution, signal-to-noise, and the narrowness of 349 

the targeted feature. The wavelength coverage of each channel was shifted relative to the 350 

adjacent channel by one pixel, so the channels overlap.  351 

We note that since the formal resolution of the G102 grism is λ/Δλ ~ 155 at 10,400 Å19 352 

(which corresponds to Δλ ~ 67 Å, or 2.7 pixel widths), the smallest bins theoretically 353 

possible are 3 pixels wide. A resolution of 3 pixels could be achieved if the 10,833 Å feature 354 

lay in the centre of a pixel, but in our data it lies significantly blue-ward of the centre of its 355 

pixel. This means there is some 10,833 Å flux in the pixel located two pixels blueward of the 356 

10,833 Å line. Indeed, when we tested the 3-pixel case we found that the amplitude of the 357 

10,833 Å feature increased by 0.011% from the 4-pixel-bin fit, which is similar to the 358 

expected increase of 0.016% if all the 10,833 Å flux fell within a central 3-pixel bin. With 3-359 

pixel bins the feature also appeared to have a slight blue ‘wing’, which is unlikely to be 360 

astrophysical, as such wings would be expected from binning the data to a resolution higher 361 

than that of the spectrograph. We therefore used conservative 4-pixel bins. 362 

Extended Data Figure 3 shows the spectroscopic light curves divided by their best-fit 363 

systematics models, along with their residuals. Extended Data Table 2 shows our median 364 

values for the transit depth and their 1σ uncertainties, calculated from the MCMC chains. We 365 



also list the RMS of the residuals of each channel, which range from 0.976 to 1.22 relative to 366 

photon noise. The resulting transmission spectrum is shown in Figure 2. 367 

Previous studies34 have highlighted the importance of considering the effect of stellar limb 368 

darkening in stellar absorption lines on exoplanet transmission spectra. To investigate 369 

whether this could cause the strong feature at 10,833 Å, we re-ran the narrow-band 370 

spectroscopic light curve fits whilst fitting for a quadratic limb-darkening law. The resulting 371 

spectrum was consistent with our previous analysis within 1-σ. 372 

Strong stellar lines that shift over the edges of pixels can introduce noise to measured 373 

transmission spectra35. We checked this effect by smoothing our extracted time series spectra 374 

with a Gaussian kernel of FWHM of 4 pixels, and re-running the narrowband spectroscopic 375 

light curve fits. Our measured 10,833 Å absorption feature remained consistent within 1 σ. 376 

MEarth observations 377 

Photometric monitoring observations were gathered using a single telescope of the MEarth-378 

South36,37 array (CS 2015) at Cerro Tololo Inter-American Observatory (CTIO), Chile. Data 379 

were obtained on 78 nights from 2017 March 22 (UT) to 2017 August 1 in groups of 4 × 15s 380 

exposures, with these exposure groups repeated at a cadence of approximately 30 minutes. A 381 

total of 3096 exposures were gathered over this period. The bandpass of these observations is 382 

in the red optical with the blue cutoff defined by RG715 glass at approximately 7,150 Å and 383 

the red cutoff defined by the decline of the CCD quantum efficiency at approximately 10,000 384 

Å. For our data reduction, we used our previously published methodology38, modified for the 385 

specifics of the MEarth data39.  386 

The CCD camera shutter failed on 2017 May 9, which required removal for servicing.  387 

This procedure introduces flat-fielding errors not corrected to sufficient precision by standard 388 

calibrations, so instead we allow for this explicitly in the analysis by solving for a change in 389 

the magnitude zero-points on both sides of the meridian at this date, following standard 390 



methods40. The result of this analysis is a “least-squares periodogram'' (shown in Extended 391 

Data Figure 4), obtained by simultaneously fitting a periodic modulation, while accounting 392 

for the four magnitude zero-points and two additional linear terms describing sources of 393 

systematic errors in the photometry (FWHM of the stellar images and the “common mode'' as 394 

a proxy for the effect of variable precipitable water vapor on the photometry). This procedure 395 

would be mathematically equivalent to a Lomb-Scargle periodogram in the absence of these 396 

six extra terms. The highest peak in the periodogram and its full width at half-maximum 397 

corresponds to a periodicity of 19.7±0.9 days. This is consistent with estimates from Kelper 398 

light curves of 17.5±1.4 days33. We find an amplitude of ~0.00150 in magnitude.  399 

AIT Photometry 400 

We acquired nightly photometric observations of WASP-107 with the Tennessee State 401 

University Celestron 14-inch (C14) automated imaging telescope (AIT) located at Fairborn 402 

Observatory in southern Arizona41,42. The observations were made in the Cousins R passband 403 

with an SBIG STL-1001E CCD camera. Differential magnitudes of WASP-107 were 404 

computed with respect to eight of the most constant comparison stars in the CCD field. 405 

Details of our data acquisition, reduction, and analysis can be found in a previous work43, 406 

which describes a similar analysis of the planetary-host star WASP-31.  407 

A total of 120 nightly observations (excluding a few observations in transit) were collected 408 

between 2017 Feb. 23 and June 28. The nightly differential magnitudes are plotted in panel 409 

(a) of Extended Data Figure 5. Panels (b) and (c) show the frequency spectrum of the 410 

observations and the phase curve computed with the best frequency. Our frequency analysis 411 

is based on least-squares sine fits with trial frequencies between 0.01 and 0.5 c/d, 412 

corresponding to periods between 2 and 100 days. The goodness of fit at each frequency is 413 

measured as the reduction factor in the variance of the original data. Low-amplitude 414 

brightness variability is seen at a period of 8.675±0.043 days with a peak-to-peak amplitude 415 



of only 0.005 mag. Our period is almost exactly half the 17.5-day rotation period found in 416 

Kepler light curves33 and demonstrates that WASP-107 has spots or spot groups on opposite 417 

hemispheres of the star during the epoch of our observations. The WASP-107b discovery 418 

team6 also found periods of around 17 and 8.3 days in their 2009 and 2010 photometry.  419 

Stellar variability correction 420 

To correct for stellar variability between the G141 and G102 epochs, we follow a similar 421 

method to previous studies44,45, and estimate the flux from the non-spotted stellar surface as 422 

Fs = max(F) + kσ, where F is the photometric light curve, k is a fitted value and σ is the 423 

scatter of the light curve. A previous study44 found that k = 1 is a good value to use for active 424 

stars, so we adopt this value. We use the best-fit period, amplitude and ephemeris from the 425 

MEarth photometry to estimate the expected flux dimming correction at the mid-transit times 426 

for both data sets. We used the wavelength-dependent spot correction factor developed in a 427 

previous work46 to correct for unocculted spots, and we set the spot temperature to be 3200K. 428 

After the correction, the two spectra align well and appear to share a flat baseline. The one 429 

overlapping spectral channel between G102/G141 is consistent within 1σ. 430 

ATMO retrieval 431 

For the combined G102 and G141 broadband spectrum corrected for photoshperic variability, 432 

we performed an atmospheric retrieval analysis using our one-dimensional radiative transfer 433 

code, ATMO20,21,47,48,49. We assumed an isothermal temperature-pressure profile, and used 434 

MCMC to fit for the following parameters: atmospheric temperature; planetary radius at a 435 

pressure of 1 mbar; grey cloud opacity; and the abundances of H2O, CO2, CO, CH4, NH3, 436 

H2S, HCN and C2H2. We assumed solar abundances under chemical equilibrium for other gas 437 

species. Note that for this analysis we excluded wavelengths coinciding with the narrowband 438 

channel centred on the 10,833 Å helium triplet. Our best-fit model is shown in Figure 1, with 439 

a a χ2 of 31.4 for 18 degrees of freedom. 440 



Assessing detector defects and random noise 441 

We checked that the residuals for the pixel columns in each frame do not reveal any obvious 442 

anomalies over the narrow 10,833 Å helium triplet, which suggests that it is not caused by a 443 

detector defects or uncorrected cosmic rays. In addition, the transit depths remained 444 

consistent within 0.5σ when we removed 1/3 of the points in the light curves, in several 445 

random sub-sets, and re-fit them with the same procedures as described above.  446 

Absorption from other species 447 

The strong absorption line of metastable 23S helium at 10,833 Å aligns extremely well with 448 

the peak of the feature. In the 20 Å region surrounding this peak (10,820 to 10,840 Å), 449 

helium is the only species that contains absorption solely within this wavelength range but 450 

nowhere else within the G102 bandpass (8,060 to 11,170 Å). There is, for example, a strong 451 

silicon absorption line at 10,830 Å 50, and a water line at 10,835 Å (vacuum wavelengths) 50, 452 

but if either species were the cause of the absorption seen in our transmission spectrum, there 453 

would be other similarly strong silicon lines measured at 10,588, 10,606 and 10,872 Å, and a 454 

water line at 10,929 Å, where we see no excess absorption. The other atoms with strong 455 

absorption lines near 10,833 Angstrom are Np, Cs, Fe, Th, S, Cr, V, Yb, and Cu – all of 456 

which can be ruled out as they are either radioactive with short half-lives, or have other 457 

strong transitions within the the 8,060 to 11,170 Å wavelength range that we do not observe. 458 

We have also found there to be no species in the ExoMol51 or HITRAN/HITEMP52,53 459 

databases with sufficiently sharp features aligned at 10,833 Å. Specifically, we searched the 460 

following species: CH4, CO2, HCN, NH, CH, OH, PO, NO, VO, TiO, CN, C2, PH3, NH3, 461 

SiO, CaO, H3+, CO, H2CO, C2H2, BeH, LiH, HCl, AlO, SO2, H2S, PN, KCl, NaCl, CS, CP, 462 

PS, MgH, NaH, CrH, CaH, FeH, and ScH. We therefore conclude that absorption by 463 

metastable helium at 10,833 Å is the most plausible explanation for the signal detected in the 464 

narrowband transmission spectrum. 465 



Assessing the Earth's exosphere 466 

Where the Earth's exosphere is illuminated by XUV radiation from the sun, there is 467 

metastable helium. At an altitude of ~500km, HST passes right through the Earth’s 468 

exosphere, and when not in the Earth’s shadow, will pass through regions containing 469 

metastable helium. The change in abundance of the metastable state throughout orbit has 470 

been shown to impart time-varying background signal in the 10,833 Å line on the timescale 471 

of one ~95 minute spaceraft orbit54. There is no telluric metastable helium in Earth's shadow, 472 

and as expected, there is no significant excess absorption at 10,833 Å while HST is in Earth 473 

shadow54. It does, however, affect HST measurements at dawn and dusk - i.e. when the 474 

spacecraft passes through the solar-illuminated upper atmosphere. The magnitude of the 475 

effect is correlated with the solar activity cycle – i.e. more activity, more UV, more 476 

metastable helium. The effect of spatially-diffuse telluric helium emission on WFC3 slitless 477 

spectroscopy is to impart an increased sky background signal across the detector. At the time 478 

of the observations, we were approaching solar minimum, and the 10.7cm radiation (which is 479 

a proxy for solar activity) was only 70 solar flux units, sfu (Solar Monitoring Program, 480 

Natural Resources Canada). According to the WFC3 instrument report54 observations only 481 

appear significantly affected when the 10.7cm flux is greater than ~100 sfu. 482 

Nonetheless, to test whether metastable helium at dawn and dusk in the Earth's atmosphere 483 

could cause an anomalous absorption feature in our transmission spectrum, we removed the 484 

first and last 4 exposures of each orbit – which encompasses the initial and final 10 minutes - 485 

when HST passed through the illuminated dusk and dawn exosphere, and re-fit the light 486 

curves. The results were consistent with previous analysis at less than 1 σ, which indicates 487 

that emission from telluric helium is not the cause of the narrowband absorption feature in 488 

our data. We note that previous transit spectroscopic studies using G10255,56 do not show 489 

excess absorption at 10,833 Å. 490 



Assessing the stellar chromosphere 491 

We also considered the possibility that the absorption feature we measure at 10,833 Å could 492 

be a result of stellar activity, since the metastable 23S state of helium is formed in the 493 

inhomogeneous upper chromospheres and coronae of stars via photo-ionisation, 494 

recombination, and collisional excitation. The planet passing over quiet regions with less 495 

10,833 Å helium absorption could in theory increase the relative transit depth at this 496 

wavelength and thus mimic an exoplanet atmospheric feature.  497 

Theoretical models of chromospheres57,58 predict the maximum equivalent width of the 498 

10,833 Angstrom helium line in the spectra of F- to early K-type stars to be ~0.4 Å. Being a 499 

K6 star, WASP-107 lies just outside the valid range of spectral types for this model. 500 

However, in the following section we show that in order to match our observed transmission 501 

spectral feature, the nominal chromospheric absorption at 10,833 Å of the WASP-107 host 502 

star would need to be five times stronger than any isolated (i.e. non-multiple), main-sequence 503 

dwarf star measured to date.  504 

After searching the literature for all 10,833 Å helium triplet equivalent width measurements 505 

of isolated dwarf stars, we found over 300 measurements of over 100 distinct stars, including 506 

23 measurements of 11 different stars of similar spectral type to WASP-107 (K5-K7). We 507 

found no measurements greater than 0.409 Å59-64. We took an additional measurement of the 508 

K6 star GJ380 with NIRSpec on Keck, which was found to have an equivalent width of 0.311 509 

Å (A. Dupree, private communication). 510 

Furthermore, it has been shown55,63 that the equivalent width of the 10,833 Å line is related to 511 

that of another neutral helium absorption line, at 5,876 Å. The 5,876 Å line is produced by 512 

the transition from the 23D to the 23P state. As such, the 5,876 Å line forms in the same 513 

regions of the stellar chromosphere as the 10,833 Å triplet (which corresponds to the 23S to 514 



23D transition). Extended Data Figure 5 shows the equivalent width measurements of the 515 

10,833 and 5,876 Å lines in a survey of 31 FGK stars63. A strong correlation is apparent.  516 

To investigate the 5,876 Å helium line of WASP-107, we co-added high-resolution spectra 517 

obtained with the HARPS spectrograph (ESO program 093.C-0474(A)). These spectra cover 518 

a wavelength range of 3,800 to 6,900 Å (Extended Data Figure 5). We fit for the equivalent 519 

width of the 5,876 Å helium line in the co-added spectrum, with the result indicated on 520 

Extended Data Figure 6 as a yellow shaded region. We find the equivalent width of this 521 

feature is similar to that measured for other single dwarf stars, with no evidence of unusual 522 

activity. Given the well-established correlation between the equivalent widths of the 5,876 523 

and 10,833 Å helium lines noted above, this is further evidence against the WASP-107 host 524 

star having an abnormally deep 10,833 Å line. In addition, we measured the S-index for 525 

WASP-107 from the HARPS spectra, and found a night-averaged value of SHK=1.26±0.03 526 

(A.W., private communication), which is a moderate value for a K6 star64. 527 

We therefore adopt the maximum equivalent width of 0.4 Å to estimate an upper limit for the 528 

amplitude of a feature that could be caused by un-occulted 10,833 Å helium absorption of 529 

stellar origin in our 98- Å -wide spectroscopic channel. We consider the limiting case in 530 

which WASP-107b occults only quiet regions of the star, where we assume there is no 10,833 531 

Å absorption. This is the scenario in which the maximum amount of stellar continuum flux at 532 

10,833 Å would be blocked out by the planet, which we treat as a fully opaque disk. We 533 

estimate the increased transit depth to be 534 

𝐷"#$%&%$' = 	  
𝐴+,

1 −	   𝑊01
𝑊2%3

= 2.064 ± 0.005%	   535 

where Apl=2.056±0.005% is the fraction of the stellar area occulted by the planet; WHe= 0.4 536 

Å, is the maximum equivalent width of the stellar absorption feature; and Wbin is the width of 537 

the spectral bin (i.e. 98 Å). This gives an upper limit of the feature caused by stellar activity, 538 



δDactivity = Dactivity - Apl = 0.008±0.005%, which is less than one fifth of the measured size of 539 

the feature (0.049±0.011%). We therefore conclude that the observed absorption feature 540 

cannot be caused by stellar chromospheric spatial inhomogeneity alone. 541 

Resolution-Linked Bias 542 

If an absorption line overlaps in both a stellar and planetary atmosphere spectrum, and the 543 

line is unresolved in the measured transmission spectrum, then the planetary absorption can 544 

be underestimated. The effect is called Resolution Linked Bias (RLB)65. For the 10,833 Å 545 

line in the WASP-107 system this dilution effect will compete with the possible over-546 

estimation of the signal from unocculted chromospherically active regions (as described in 547 

the ‘Assessing the stellar chromosphere’ section). The magnitudes of both effects will depend 548 

on whether the planet transits in front of active or quiet regions of the star. The RLB effect 549 

would be largest if the planet transited only chromospherically active regions (which have the 550 

highest 10,833 Å absorption). We estimated the magnitude of the RLB effect in this limiting 551 

case following the method described in a previous work65, and assuming an equivalent width 552 

of 0.4 Å for the 10,833 Å stellar line. For a measured absorption excess of 0.049±0.011% in a 553 

98 Å bin centred on the 10,833 Å line, we could be underestimating the planetary absorption 554 

by up to 0.009% (i.e. about one fifth of the measured signal). However, without knowledge 555 

of which part of the chromosphere the planet transits; the stellar line profile; and the velocity 556 

structure of the planetary helium signature, we cannot accurately estimate the magnitudes of 557 

the competing effects. 558 

Stellar flares 559 

The He 10,833 Å line appears in emission in solar- (and presumably stellar-) flares66, so 560 

active stars like WASP-107 could show short-term variability in the line, which may be 561 

difficult to disentangle from a transiting planetary signal34. Flares are unlikely to wholly 562 

mimic the signal we detect, since the planet would need to pass in front of flaring regions of 563 



the star throughout the duration of the transit. Instead, unocculted flares could dilute He 564 

10,833 Å atmospheric absorption. Visual inspection of the raw light curve of the 565 

spectroscopic channel centred on 10,833 Å shows no evidence of flare events. Additionally, 566 

the pre- and post- transit flux levels agree with each other, which would not be the case if 567 

there was significant 10,833 Å emission from the tail of a flare. As a precaution, we re-568 

produced the narrowband transmission spectrum around the 10,833 Å line using different 569 

combinations of the out-of transit baseline: firstly with only orbits 2 and 4, then with orbits 1 570 

and 3, and then orbits 2 and 5. All three cases gave a 10,833 Å absorption feature consistent 571 

to within 1σ of our full fit. 572 

Photospheric spots and faculae 573 

To quantify the effect of a heterogeneous photosphere on the transmission spectrum around 574 

10,833 Å, we used a variability modelling method67,68 which uses an ensemble of model 575 

stellar photospheres with randomly located active regions to provide estimates of the fraction 576 

of the stellar surface covered by photospheric spots and faculae for a given rotational 577 

variability amplitude. While variability monitoring traces only the non-axisymmetric 578 

component of the stellar heterogeneity and thus provides a lower limit on active region 579 

covering fractions68, this numerical approach provides a more complete understanding of the 580 

range of covering fractions that may correspond to an observed variability level. The model 581 

describes the integrated full-disk spectrum by the combination of three components: the 582 

immaculate photosphere, spots, and faculae. We used three spectra interpolated from the 583 

PHOENIX model grid69 with log g = 4.5 and [M/H] = +0.02 and different temperatures to 584 

represent the three components. Following previous works68, we set the photosphere 585 

temperature, Tphot, to the effective temperature of the star (Teff=4430 K6) and adopt scaling 586 

relations for the spot temperature Tspot
70,71 and faculae temperature Tfac

72. 587 



Thus, the temperatures of the three components are Tphot = Teff = 4,430 K, Tspot = 0.73 × Tphot 588 

= 3,230 K, and Tfac = Tphot + 100 K = 4,530 K. WASP-107b’s discovery paper6 reports a 17-589 

day periodic modulation with a 0.4% semi-amplitude (0.8% full-amplitude) for WASP-107. 590 

Assuming a typical spot radius of rspot = 2º, we find the reported rotational variability could 591 

be caused by a spot filling fraction of fspot = 4+9
-2% (1σ confidence interval) if the variability 592 

is due to spots alone. In the more realistic case in which spots and faculae are both 593 

contributing to the variability, we find fspot = 8+6
-3% and ffaculae = 53+15

-12%. The covering 594 

fractions we report are means over the entire model photosphere. They do not take into 595 

account relative over- or under-abundances of magnetic features on the Earth-facing 596 

hemisphere during a transit. Therefore, in the worst case scenario, they could underestimate 597 

the hemispheric covering fractions by a factor of 2. However, the 1-σ confidence intervals, 598 

which are derived from 100 model realizations with randomly selected active region 599 

locations, are deliberately conservative to account for this. Extended Data Figure 6 shows 600 

how unocculted photospheric stellar heterogeneities could affect the transmission spectrum, 601 

assuming the planet transits a chord of immaculate photosphere. The stellar contamination 602 

factor, ε, on the y-axis is multiplied by the true (Rp/Rs)2 transit depth to produce the observed 603 

transmission spectrum, i.e. ε > 1 means the observed transit depth is deeper than expected 604 

from the planetary atmosphere model. The spots+faculae model does not predict an increase 605 

in transit depth at 10,833 Å. No sharp features around 10,833 Å are apparent. Instead, the 606 

model predicts transit depths should be inflated by ~1% across the full wavelength range of 607 

G102 with perhaps some features apparent at ~8,500 Å and 8,900 Angstrom (for this reason 608 

we only use the 8,780-11,370 Å region in our full transmission spectrum, even though the 609 

G102 throughput extends down to 8,000 Å). The strong absorption feature we measure is 610 

therefore unlikely to be caused by photospheric inhomogeneity.  611 

1-D escaping atmosphere model 612 



Here we give a brief overview of the first model used to investigate the narrowband 613 

transmission spectrum at 10,833 Å, which is presented and described in more detail in a 614 

previous work22. This 1D model is based on the assumption that a thermosphere of a close-in 615 

exoplanet can be well represented by the density and velocity profile of an isothermal Parker 616 

wind driven by gas pressure73. We assume a composition of atomic hydrogen (90% by 617 

number) and helium (10%). We find the solution for the hydrogen ionization balance and the 618 

distribution of helium atoms in the ground, excited 23S, and ionized states. The physical 619 

processes taken into account in the helium balance are photoionization from the ground and 620 

23S states, recombination to the singlet and triplet states, collisional transitions between the 621 

triplet 23S state and states in the helium singlet ladder, which includes collisions with both 622 

free electrons and neutral hydrogen atoms, and the radiative decay from the 23S state to the 623 

ground state. The photoionization rates are calculated using the UV stellar flux of a K6 star 624 

HD 85512 taken from the MUSCLES survey74 (version 2.175,76), placed at the orbital distance 625 

of WASP 107b The equations used to compute the hydrogen/helium distributions, along with 626 

all the relevant reaction rate coefficients and cross sections, are described in a previous 627 

work22. We only changed the input parameters such as the mass and radius of the planet and 628 

its host star, as well as the input stellar spectrum, so that they match the properties of WASP 629 

107b.  630 

Based on the obtained density profile of helium in the 23S state, we calculate the optical 631 

depth and the in-transit absorption signal at 10,833 Å, assuming that a planet with a 632 

spherically symmetric thermosphere transits across the center of the stellar disk. For a planet 633 

of given mass and radius, the wind temperature and the total mass loss rate are free 634 

parameters in the model. Based on the results from the literature77,78, we explore a 635 

temperature range between 5,000-13,000 K. In order to produce the absorption signal 636 

consistent with our measurement, the required mass loss rate is between 1010 and 3×1011 g/s. 637 



3-D escaping atmosphere model 638 

Our second model has previously been used to interpret the escaping exosphere of the 639 

Neptune-mass exoplanet, GJ436b9,23. It considers neutral helium atoms that are released from 640 

the top of the thermosphere and subjected to planetary and stellar gravity, radiation pressure, 641 

and photoionization. We found that the data are well explained by 23S helium atoms escaping 642 

at a rate of 106-107 g/s. Stellar radiation pressure on the escaping helium atoms is stronger 643 

than the counter-balancing stellar gravity by a factor of approximately 10 and 50 for the 644 

weakest and strongest of the 10,833 Å triplet lines, respectively. Thus the gas blows away so 645 

swiftly as to form a tail nearly aligned with the star-planet axis. 646 

 647 

Code availability 648 

The custom code used to extract the HST spectra from the raw data frames is available upon 649 

request. The HST light curve fitting was performed using the open source BATMAN 650 

(https://github.com/lkreidberg/batman) and emcee codes (http://github.com/ dfm/emcee), and 651 

the proprietary RECTE code. The ATMO code used to compute the lower atmosphere 652 

models is currently proprietary, as are the 1-D and 3-D upper atmosphere codes.  653 

Data availability  654 

Raw HST data frames are publicly available online at the Mikulski Archive for Space 655 

Telescopes (MAST; https://archive.stsci.edu). 656 
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 772 

Extended Data Figure 1 | G102 white light curve and broadband spectroscopic light 773 

curves covering the 0.88-1.14 micron wavelength range for WASP-107b. (a) White light 774 

curve relative flux divided by systematics model, with best-fit transit light curve plotted in 775 

black. (b) White light residuals and 1σ errors, after removing the combined transit and 776 



systematics components of the best-fit model. (c) Points are spectroscopic light curves 777 

divided by systematics models, black curves are best-fit transit models, with vertical offsets 778 

applied for clarity. (d) Best-fit spectroscopic model residuals with vertical offsets applied for 779 

clarity. 780 

 781 

Extended Data Figure 2 | Narrow-band (4-pixel-wide) spectroscopic light curves 782 

covering the 1.06-1.12 micron wavelength range. (a) Points are light curves divided by 783 

systematics models, black curves are best-fit transit models. (b) Best-fit model residuals with 784 

vertical offsets applied for clarity. The 5 non-overlapping channels used to measure 10,833 Å 785 

absorption are highlighted in blue. 786 



 787 

Extended Data Figure 3 | Ground-based photometry for WASP-107 from MEarth. We 788 

performed a Lomb-Scargle periodogram search and found a best-fit period of 19.7±0.9 days, 789 

with a relative amplitude of ~0.00150 mag. 790 



 791 

Extended Data Figure 4 | Ground-based photometry for WASP-107b from AIT. (a) The 792 

nightly photometric observations of WASP-107 in the Cousins R band acquired with the 793 

Tennessee State University C14 automated imaging telescope at Fairborn Observatory during 794 

the 2017 observing season. (b) The frequency spectrum of the 2017 observations shows low-795 



amplitude variability with a period of 8.675 days. (c) The data phased to the 8.675-day 796 

period, has a peak-to-peak amplitude of just 0.005 mag.  797 

 798 

 799 

Extended Data Figure 5 | Equivalent widths of helium 5,876 Å and 10,830 Å lines. (a) 800 

Measurements for 30 stars of different colour indices, from a previous work63. These two 801 

helium lines are expected to form in the same regions of stellar atmospheres and their 802 

equivalent widths are clearly correlated. Our 5,876 Å measurement for WASP-107 is plotted 803 

as a red line. Red shaded region shows the 1σ error. Equivalent width measurement and 1σ 804 

error of the 5,876 Å line for WASP-107 (B-V > 0.7) from HARPS spectra is shown as red 805 

shaded region. (b) Co-added spectra from HARPS radial velocity campaign for WASP-107 806 

around the 5,876 Å line of metastable helium. Lines fit with Gaussian profiles. 807 



 808 

Extended Data Figure 6 | The effects of an inhomogeneous photosphere on the 809 

transmission spectrum of WASP-107b. Lines show the stellar contamination produced by 810 

unocculted spots and faculae. Shaded regions indicate the 1σ uncertainty on the stellar 811 

contamination due to the uncertainty on spot and faculae covering fractions. (a) The region 812 

around the 10,830 Å (air wavelength) helium triplet at the resolution of the PHOENIX 813 

spectra (R=500,000). (b) The full G102 wavelength range in 15 Å bins. 814 

 815 

 816 

 817 

 818 



 819 

Extended Data Table 1 | Fitted parameters from the G102 white light curve. Errors 820 

quoted encompass 68% of the MCMC samples after burn-in. (a) Parameters fixed from Dai 821 

& Winn (2017). 822 



 823 



Extended Data Table 2 | All results from transit light curve fits. Modified results from a 824 

previous study18 are included. RMS is the root mean squared of the model residuals in parts 825 

per million (PPM); the second-to-last column is the RMS divided by the expected photon 826 

noise; the last column is the correction factor we applied to account for stellar variability. 827 

 828 

Extended Data Table 3 | Results from ATMO retrieval code for the lower atmosphere. 829 

VMR stands for volume mixing ratio. Uncertainties for temperature, Rp/Rs and VMR H2O 830 

encompass 68% of the MCMC samples after burn-in. Upper limits are from 1σ MCMC 831 

errors. 832 

 833 
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