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EHRs Connect Research and Practice: Where Predictive Modeling, Artificial Intelligence, and 

Clinical Decision Support Intersect 
 

 

Research highlights 

 

 EHRs are increasingly likely to contain data and functionality that can support computational approaches to 

healthcare. 

 

 Predictive modeling of EHR data has achieved 70-72% accuracy in predicting individualized treatment 

response at baseline. 

 

 Clinical decision support can be conceptualized as a form of artificial intelligence embedded within clinical 

systems. 

 

 Despite challenges, data-driven clinical decision support based on real-world populations offers numerous 

advantages. 

 

 Such approaches may also contribute to better implementation of research into real-world clinical practice. 
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Abstract 

Objectives: Electronic health records (EHRs) are only a first step in capturing and utilizing health-related data – the 

challenge is turning that data into useful information.  Furthermore, EHRs are increasingly likely to include data 

relating to patient outcomes, functionality such as clinical decision support, and genetic information as well, and, as 

such, can be seen as repositories of increasingly valuable information about patients' health conditions and responses 

to treatment over time.   Methods: We describe a case study of 423 patients treated by Centerstone within Tennessee 

and Indiana in which we utilized electronic health record data to generate predictive algorithms of individual patient 

treatment response.    Multiple models were constructed using predictor variables derived from clinical, financial 

and geographic data.   Results:  For the 423 patients, 101 deteriorated, 223 improved and in 99 there was no change 

in clinical condition.    Based on modeling of various clinical indicators at baseline, the highest accuracy in 

predicting individual patient response ranged from 70-72% within the models tested.   In terms of individual 

predictors, the Centerstone Assessment of Recovery Level – Adult (CARLA) baseline score was most significant in 

predicting outcome over time (odds ratio 4.1 + 2.27).  Other variables with consistently significant impact on 

outcome included payer, diagnostic category, location and provision of case management services. Conclusions: 

This approach represents a promising avenue toward reducing the current gap between research and practice across 

healthcare, developing data-driven clinical decision support based on real-world populations, and serving as a 

component of embedded clinical artificial intelligences that “learn” over time. 
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Introduction 
In the modern Information Age, we are often overwhelmed by data.  The challenge is converting that data into 

useful information.
1
   Practitioners and organizations in the healthcare field face this challenge as they strive to 

translate new technological and research advances into clinical advances.  Collecting data in an electronic health 

record (EHR) is only the first step – indeed, we must further leverage that data through technology in order to 

provide useable, actionable information.  Without such additional functionality, EHRs are essentially paper-based 

records stored in electronic form, and their potential to transform care is limited.  Expanding use of EHRs by 

modeling and transforming that data has broad implications for connecting research and practice in the future. 

The lack of actionable, predictive information in healthcare is ironic given that it is a particularly data-rich 

environment. Healthcare is rife with documentation requirements established by payers and accreditation bodies that 

produce much potentially useful information. Managed care companies and disease management vendors have large 

teams of data analysts sifting through health-related claims data (often limited to items such as service date, service 

type, and diagnosis) in order to identify people who may be appropriate for outreach and intervention to prevent 

negative outcomes.  In contrast, many health providers, who produce much richer datasets that include information 

about symptoms, clinical assessments, patient behaviors, and social factors such as SES (socio-economic status), 

level of education, and employment, lack the capacity to analyze and transform such data into actionable 

information. This represents missed opportunities for significant data-driven healthcare improvements based on the 

effective utilization of data in EHRs.  In this paper, we provide an argument and real-world example of what this 

might entail. 

Data-driven healthcare is key for addressing the known 13-17 year gap between research and practice in clinical 

service delivery.
2
  Connecting the processes of collecting data in the course of providing services to ongoing 

modeling efforts could address two problems: evidence-based guidelines derived from research are often out-of-date 

by the time they reach widespread use;  and such guidelines don’t always account for real-world variations and 

comorbidities that can impede effective implementation.
3,4

 While clinicians are receptive to meaningful advances in 

treatment, they are also aware of the complexities they face in daily practice that often are not effectively addressed 

by evidence-based guidelines. For example, guidelines may recommend the same treatment for everyone (i.e., one-

size-fits-all), or prescribe a rigorous, standardized sequence of treatment options.
3,4

 Standardized algorithmic 

approaches to care are clearly effective in research settings; however, clinicians frequently lack the time and 
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information required to make a reliable diagnosis (a prerequisite for many algorithms) and to deal with the minutiae 

of specific treatment recommendations.
5
  

  Concerns that treatment algorithms are inflexible and unresponsive to the needs of real-world clinical 

populations appear to have a basis in fact. A strong allegiance to high fidelity often overshadows the local adaptation 

that often must occur in live clinical practice.  Indeed, even when implemented using technological methods, static, 

one-size-fits-all algorithms do not take full advantage of the technology, or the potential value of the live clinical 

data surrounding them in EHRs.  Such algorithms are essentially “ignorant” of the real-world knowledge sitting 

right next to them – knowledge that could be used to adapt them to their “environment”.  From an evolutionary 

perspective, the end result would likely be extinction.  Not surprisingly, when artificial implementation supports are 

removed, practices often fail to sustain or deviate significantly from fidelity.
6
  

The use of predictive models for informing healthcare treatment algorithms accentuates the tension that exists 

between the art and science of treating common health disorders, between the knowledge of experienced clinicians 

and predictive recommendations derived from data. This old controversy is best characterized by Paul Meehl, who 

noted nearly half a century ago “When you are pushing [scores of] investigations [140 in 1991], predicting 

everything from the outcomes of football games to the diagnosis of liver disease and when you can hardly come up 

with a half dozen studies showing even a weak tendency in favor of the clinician, it is time to draw a practical 

conclusion” (p.372-373).
7 

The research-practice gap clearly contributes to the push for clinical decision support in healthcare.  The simple 

concept underlying this effort is that providing decision support to clinicians will improve their decision making, 

leading to better efficiency and quality in care.
8-10

  Decision support, as the name implies, refers to providing 

information to clinicians, typically at the point of decision making.  It comes in a variety of forms
11

 and has also 

been applied to problems related to production, quality, and infrastructure across many fields.
12-14

 However, many 

current decision support systems in healthcare rely on expert- or standards-based models, rather than models that 

adapt population-based guidelines to individual patient characteristics by utilizing existent EHR patient data.  The 

former are based on statistical averages or expert opinion of what works for groups of people in general, whereas 

data-driven models are essentially an individualized form of practice-based evidence drawn from the live 

population.  The latter falls within the concept of “personalized medicine.” 
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There are numerous advantages to building decision support systems driven by live data based on the actual 

population.  The ability to adapt specific treatments to fit the specific symptoms and functional characteristics of an 

individual’s disorder transcends the traditional disease model.  Much of the focus of the past decade has been on the 

utility of genetic data to inform individualized care (a.k.a “personalized medicine”).
15,16

 However, it is likely that the 

next decade will focus on the use of multiple sources of data – genetic, clinical, socio-demographic – to build a more 

complete profile of the individual, their inherited risks, and the environmental/behavioral factors associated with 

disorder and the effective treatment thereof.
17

  Indeed, this is already apparent in the trend of combining clinical and 

genetic indicators for predicting cancer prognosis.
18-19

 It should be expected that much of this data will be derived 

from 21st century EHRs. 

Improving quality and use of clinical decision support tools requires accurately anticipating the consequences of 

various choices providers make during clinical service delivery.   This entails understanding what indicators are 

important in general, as well as the nuances of what is important in a particular set of circumstances (e.g., the 

impact of alternative treatments on an individual patient’s outcome trajectory).  Predictive modeling and data mining 

(PM/DM) are two interrelated approaches to this issue.  Data mining is the process of discovering patterns in data, 

typically through automatic or semi-automatic means (also sometimes referred to as machine learning).
20

 It can be 

applied to regression and classification problems, identify linear and nonlinear patterns, and adapted to binary or 

multi-class outcomes.  Identified patterns can then be used to make predictions about future events, i.e., predictive 

modeling.  We may want to know what treatment will result in the best outcome, or how staff should be scheduled 

for maximum efficiency. Data mining methods can answer both of these questions.  The end result is actionable 

information for clinicians and managers.   

For instance, we can use historical patients in the existent EHR to identify patterns that can then be applied to 

new clients as they walk in the door (e.g., patterns that typify patients who responded to a particular treatment and 

those who did not).   The PM/DM approach utilizes sophisticated techniques to “decompose” individuals into their 

component characteristics and make targeted predictions based on the probabilities associated with those 

components (in essence creating a composite score from individual component probabilities) – even for individuals 

with novel sets of characteristics – rather than basing predictions on statistical averages or case matching.  The 

measure of the ability to successfully accomplish this is a pragmatic one – the ability to predict accurately on sets of 

instances outside the training sample used to construct the model.
20
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However, data mining or clinical decision support alone is not sufficient for delivering personalized 

recommendations at the point of care.  Utilizing them in conjunction can create a system of real-time data-driven 

clinical decision support, or “adaptive” clinical decision support.   The result is a more responsive and personalized 

model. One advantage of this approach is that the system can improve over time by evaluating its predictions and 

“learning” from its mistakes.  In a sense, this represents a form of artificial intelligence embedded within the live 

clinical system.  An adaptive model can generate and apply new evidence about effective practices every day within 

a live clinical system (i.e., “practice-based evidence”), as well as modify clinically-established guidelines to fit the 

needs of patients in real world settings. 

Continuous improvement of clinical decision support and advancement of clinical knowledge are seen as key 

features for future data systems and EHRs in healthcare.
9
 In terms of actual application, modeling can be used to 

support clinical decisions provided a flexible, adaptable IT framework can consolidate data from different sources.  

Typically, data warehousing provides such an infrastructure to mix rich genetic and clinical data, mine the data, and 

develop algorithms.  In contrast to the EHR, a data warehouse does not have to be tied to a single provider 

organization, and thus enhances the power, scope, and utility of the underlying EHRs.  In many cases, Health 

Information Exchanges (HIEs) can be designed as data warehouses.  Predictive algorithms can be derived from these 

data warehouses as well as the individual underlying EHRs (Fig.1 Time 1) and then be applied to data obtained from 

new patients, with the end result pushed to the front-end web application of the EHR and displayed for clinicians' 

use along with the clinical record (Fig.1 Time 2).  Patterns learned from past patients' experiences can be 

continuously refined as new patients enter the system. 
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Figure 1: Clinical Decision Support - Data Flow Diagram 

 
 

Real-time data-driven clinical decision support narrows the research-practice gap and incorporates the 

idiosyncrasies of the actual clinical population, melding research and practice into the same activity by utilizing 

clinical EHR data in an ongoing basis to create and adapt knowledge.  One is no longer limited to do research, only 

later to try to apply it to practice.  Research becomes practice. 

The following case study demonstrates the challenges and opportunities of utilizing these aforementioned 

methods on EHR data to develop optimal treatment recommendations in a real-world clinical population. 

 

Methods 

A. Setting 

 Centerstone providers in Tennessee and Indiana see over 70,000 distinct patients a year across over 130 

outpatient clinical sites.  Centerstone Research Institute (CRI) is an arm of Centerstone devoted to integrating 

evidence and practice, conducting clinical research, developing clinical decision support tools, and building new 

healthcare informatics technologies, among other goals.  Centerstone, which has a fully functional EHR that 

maintains virtually all relevant patient records, operates under a mixture of fee-for-service and case rate payment 

methodologies, including Medicare, Medicaid, and commercial payers, as well various other payers such as county 

Time 1

Time 2
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subsidies, DCS (Tennessee Dept. of Children Services), federal probation funds, and grants.  Centerstone, like many 

other community mental health providers, is under increasing pressure from all payer sources to hold down costs 

and increase service provision. 

  The initial work described here was necessitated by changes to a state-run payer (non-Medicaid “Safety 

Net”) in Tennessee, which compelled Centerstone to better optimize the match between available services and the 

clinical needs of patients so as to minimize provision of unnecessary services while maximizing outcomes.  We 

approached this requirement by determining the probability that a given set of services would result in average or 

above-average outcomes for a particular patient.  This allowed us to identify services that would provide patients 

with the best probability of positive outcomes while minimizing use of services unlikely to be beneficial, increasing 

the availability of limited resources for other patients. 

B. Data 

 Data was extracted from Centerstone’s electronic health record into a specialized schema in the data 

warehouse for data mining applications.  The target variable was the follow-up CARLA outcome measure 

(Centerstone Assessment of Recovery Level – Adult, http://centerstoneresearch.org/files/CARLA_instrument.pdf) at 

6 months post baseline.  The CARLA is a measure of level of recovery developed and validated by clinical experts 

at Centerstone, informed by recovery levels used by Pike’s Peak Mental Health Center, as well as other level-of-care 

models including ASAM, LOCUS, and Ohio scale.
21

 Using the CARLA, clinicians provide a systematic rating of 

patient symptoms, functioning, supports, insight, and engagement in treatment - a score of 1 indicating severe 

impairment in each dimension and a score of 4 indicating little or no impairment.  Descriptive statistics on CARLA 

at baseline, final (follow-up), and delta (change in health outcome over time) can be seen in Table 1.  Table 2 shows 

frequencies for different categories of change (deterioration, improvement), with roughly 54% showing 

improvement averse to 24% showing deterioration. 

Table 1: Carla Descriptive Stats 

 N Minimum Maximum Mean Std. Deviation 

Baseline CARLA 423 1.2 3.6 2.428 .4069 

Final CARLA 423 1.4 3.8 2.603 .3955 

CARLA Delta 423 -1.0 1.8 .175 .4190 

 

http://centerstoneresearch.org/files/CARLA_instrument.pdf
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Table 2: CARLA Delta Frequencies 

  
Frequency Percent 

Valid 
Percent 

Cumulative 
Percent 

Deteriorated 101 23.9 23.9 23.9 

No Change 99 23.4 23.4 47.3 

Improved 223 52.7 52.7 100.0 

Total 423 100.0 100.0   

 

 Predictor variables initially incorporated into the predictive model included Baseline CARLA Score, 

Gender, Race, Age, Baseline Tennessee Outcomes Measurement System (TOMS) Symptomatology Score, Baseline 

TOMS Functioning Score, Previous Mobile Crisis Encounter (binary, yes/no), Diagnosis Category, Payer, Location, 

County, Region Type (Urban or Rural), Service Profile (types of services received) and Service Volume (amount of 

services received).  The initial sample was delimited to June 1, 2008 through approximately June 1, 2009 and 

included only new intakes at time of baseline CARLA (had not seen previously in Centerstone’s clinics since at least 

2001).  After these various filters were applied and data was screened for missing key fields (such as the CARLA at 

both baseline and follow-up), the final sample size for initial modeling was 423.  Basic demographics of this sample 

can be seen in Table 3 – the patients were largely white, female, and suffering from mood disorders, with a 

significant number (62%) exhibiting co-occurring chronic physical disorders such as chronic pain, high blood 

pressure, diabetes, and cardiovascular disease.  

Table 3: Patient Demographics 

Gender % Race % Age Group % Diagnosis % Locale % 

F 71.3% White 79.5% 18-29 27.4% Anxiety 8.0% Urban 44.4% 

M 28.7% Black 10.1% 30-45 37.7% Bipolar 20.5% Rural 55.6% 

  
 

Asian 0.9% 46-65 31.0% Depression 42.8%     

  
 

Other 1.8% >65 3.9% Other 28.7%     

    Unknown 7.6%             
 

C. Data Mining 

 After the initial data loading and calculations were made, data was loaded into KNIME (Version 2.1.1)
22

, an 

advanced data mining, modeling, and statistical software.  Data mining typically follows a standard process flow 

that can be broken into a number of main steps: data preparation, feature selection, model construction, and model 

evaluation.  It should be noted that not all steps are performed every time – for instance one may build models 

without any feature selection in order to evaluate the effect of feature selection on a particular dataset.  Below, these 
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steps are briefly outlined in the context of the current study; a more comprehensive overview of specific data mining 

strategies and methodology can be found in other resources on the subject.
20,23 

 The first stage is data preparation.  The initial analysis focused on clinical outcomes as measured by the 

change in CARLA scores over time.  The primary question was whether patients would obtain average, better, or 

worse outcomes based on services received.  As such, the target variable was discretized into a binary variable of 

plus/minus the mean (equivalent to an equal bins classification approach).  The consequences and assumptions of 

reduction to a binary classification problem are addressed in Boulesteix et al.,
19

 who noted that the issues of making 

such assumptions are roughly equivalent to those around normal distributions.  All predictor variables were z-score 

normalized.  Subsequently, all predictor variables were either 1) not discretized (labeled “Bin Target”), or 2) 

discretized via CAIM (Class-Attribute Interdependence Maximization).  CAIM is a form of entropy-based 

discretization that attempts to maximize the available “information” in the dataset by delineating categories in the 

predictor variables that relate to classes of the target variable.  Use of patterns in the data itself has been shown to 

improve classifier performance.
24

 It should be noted that not all models are capable of handling both discretized and 

continuous variables, and thus both methods were not applied to all modeling methods.  Additionally, some 

methods, such as certain kinds of neural networks or decision trees, may dynamically convert numeric variables into 

binary or categorical variables as part of their modeling process. 

 Multiple models were constructed on the dataset to determine optimal performance using both native, built-

in KNIME models as well as models incorporated from WEKA (Waikato Environment for Knowledge Analysis; 

Version 3.5.6).
20

 Models were generally run using default parameters, though some experimentation was performed.  

Models tested included Naïve Bayes,
20

 HNB (Hidden Naïve Bayes),
25

 AODE (Aggregating One-Dependence 

Estimators),
26

 Bayesian Networks,
20

 Multi-layer Perceptron neural networks,
20 

Random Forests,
27

 J48 Decision 

Trees (a variant of the classic C4.5 algorithm),
28

 Log Regression, and K-Nearest Neighbors.
20

 Additionally, 

ensembles were built using a combination of Naïve  Bayes, Multi-layer Perceptron neural network, Random Forests, 

K-nearest neighbors, and logistic regression, employing forward selection optimized by AUC (area under the 

curve).
29

  Voting by committee was also performed with those same five methods, based on maximum probability.
30

  

Voting by committee is a meta-modeling technique (like ensemble) that combines multiple models by allowing them 

to “vote” for the winning classification.  It seeks to take advantage of the strengths of different modeling approaches 
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while minimizing their drawbacks.  Due to the number of models used, detailed explanations of individual methods 

are not provided here for brevity, but can be found elsewhere.
20,23

   

 The last step was evaluating model performance to rule out the possibility that statistical findings may be an 

artifact of capitalization on chance, which was performed using 10-fold cross-validation.
20

 All models were 

evaluated using multiple performance metrics, including raw predictive accuracy; variables related to standard ROC 

(receiver operating characteristic) analysis, the AUC (area under the curve), the true positive rate, and the false 

positive rate
31

 and Hand’s H.
32

  For readers unfamiliar with ROC analysis, it is a form of signal analysis where AUC 

represents the area under the curve of a plot of true positives and false positives (we refer interested readers to the 

excellent introduction on the subject by Fawcett 2004).
31

 The data mining methodology and reporting is in keeping 

with recommended guidelines,
33

 such as the proper construction of cross-validation, incorporation of feature 

selection within cross-validation folds, testing of multiple methods, and reporting of multiple metrics of 

performance, among others.  

Additionally, some better performing models were evaluated using feature selection prior to modeling (but 

within each cross-validation fold).  Feature selection is a key component in filtering out noisy and/or redundant 

variables from datasets and building parsimonious, explanatory models that retain generalizability.  Various methods 

were attempted: univariate filter methods (Chi-squared, Relief-F), multivariate subset methods (Consistency-Based 

–Best First Search, Symmetrical Uncertainty Correlation-Based Subset Evaluator) and wrapper-based (Rank Search 

employing Chi-squared and Gain Ratio).  The advantages and disadvantages of these different types of feature 

selection are well-addressed elsewhere.
34 

 

Results 

 The results of the various combinations of modeling method and discretization can be seen in Table 4, 

sorted by AUC.  The highest accuracies are between 70-72%, with AUC values ranging between .75-.79.  It should 

also be noted that the Spearman’s rank-order correlation between AUC and Hand’s H was .977 (p<.01), indicating 

little divergence between the two measures, at least on this particular dataset.  Hand
32

 has indicated that these two 

measures will diverge when misclassification costs vary across methods.  There was no evidence of that in this case, 

or at least none indicating that the divergence was significant.  These initial results suggest a predictive capacity of 
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the current EHR data within Centerstone.  It is suspected that utilizing more sensitive outcome measures designed to 

specifically measure change over time will improve this capacity. 

Table 4: Model Performance 

10X Cross-Val (partitioned)      

Model Binning Accuracy AUC TP rate FP rate H 

AODE CAIM 72.3% 0.777 74.6% 32.6% 0.274 

Lazy Bayesian Rules CAIM 71.2% 0.774 75.2% 36.2% 0.270 

Naïve Bayes CAIM 71.6% 0.771 76.5% 36.5% 0.271 

Bayes Net - K2 CAIM 70.7% 0.769 75.4% 37.4% 0.255 

Bayes Net - K2 Bin Target 70.4% 0.768 75.7% 38.1% 0.256 

Ensemble CAIM 70.9% 0.760 76.9% 38.1% 0.245 

Naïve Bayes Bin Target 68.6% 0.759 74.7% 41.0% 0.241 

Bayes Net - TAN CAIM 70.0% 0.757 73.3% 37.0% 0.230 

Bayes Net - TAN Bin Target 69.7% 0.756 73.4% 37.6% 0.239 

MP Neural Net CAIM 70.7% 0.753 75.6% 37.6% 0.227 

Ensemble Bin Target 70.2% 0.750 74.5% 37.6% 0.220 

Classif via Linear Reg Bin Target 68.8% 0.749 71.5% 37.6% 0.236 

MP Neural Net Bin Target 69.5% 0.747 73.0% 37.7% 0.237 

K-Nearest Neighbor CAIM 69.5% 0.738 73.6% 38.4% 0.209 

Vote CAIM 68.1% 0.736 72.7% 40.5% 0.201 

Random Forest Bin Target 66.0% 0.724 70.3% 43.1% 0.204 

Random Forest CAIM 67.8% 0.722 71.7% 40.1% 0.190 

Log Regression CAIM 67.8% 0.721 77.7% 47.9% 0.181 

Log Regression Bin Target 67.1% 0.712 71.7% 41.7% 0.180 

J48 Tree CAIM 68.1% 0.681 71.5% 39.4% 0.169 

Vote Bin Target 63.4% 0.661 76.2% 57.1% 0.124 

J48 Tree Bin Target 66.9% 0.654 72.4% 32.6% 0.149 

K-Nearest Neighbor Bin Target 63.8% 0.636 65.9% 44.2% 0.079 
 

 These models were then applied to a series of pre-determined “service packages” that most typical patients 

receive.  The results of one of the higher performing models by AUC (Bayesian Network – K2) were used to 

generate predictive information for the clinician at the time of intake.  Implementation with the live system is being 

addressed in a separate, upcoming study (data not shown).  However, examples of these predictions (based on actual 

data) can be seen in Figures 2 and 3. 
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Figure 2: Example 1 of treatment recommendations using pre-set “service packages” 

 
 

Figure 3: Example 2 of treatment recommendations using pre-set “service packages” 
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 The results of feature selection were mixed (data not shown).  Although some methods were able to 

produce similar performance using smaller, more parsimonious feature sets than the full feature set models (most 

notably wrapper-based approaches), they generally did not improve performance significantly.  Additionally, the 

selected feature sets displayed a marked degree of variability across methodologies.  This is a common issue, to be 

expected with complex problems.
35

 In many domains there are potentially multiple models/feature sets that can 

produce comparably good results.  In terms of individual predictors (as assessed by the chi-squared feature selection 

method), baseline CARLA score was the most significant (Odds Ratio: 4.1, 95% Confidence Interval: 1.83-6.37).  In 

other words, patients with lower baseline scores were 4.1 times more likely to experience above-average outcome 

improvement than those patients with higher baseline scores.   Other variables with consistently significant impact 

included payer (possibly as a proxy for socio-economic status), diagnostic category, county/location, and provision 

of case management services.  However, given the mixed improvement using feature selection and small sample 

size, individual predictor variable performance should be taken with caution at this juncture. 

 

Conclusions 

 Recent years have the seen the proliferation of electronic health records (EHRs) across the mental 

healthcare field and the healthcare industry in general.  The current challenge is turning data collected within EHRs 

into information useful for healthcare providers and addressing the 17-year research-practice gap in healthcare.   

Technology utilizing predictive modeling and data mining has the potential to transform data about the past into 

information about the future to improve clinical care.  Indeed, ongoing research in a large community-based mental 

health provider has produced models that are accurate over 70% of the time (i.e., for 7 out of 10 patients), even 

without enhancing data collected in the EHR specifically for predictive purposes.  Through such an approach the 

potential of EHRs can be realized.  Long term, this will significantly impact the way research is incorporated into 

practice. 

 Predictive modeling can produce tailored recommendations that adapt to variation of real-world 

populations, and even individuals.   New innovations and recommendations for individualized care can literally be 

integrated into predictive models overnight, as opposed to the decades that research evidence often takes to diffuse 

into common practice.   Without individualized care recommendations that have the capacity to rapidly incorporate 

changing evidence, adoption of evidence-based practice and treatment guidelines will likely continue to lag. While 
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there are many barriers to adoption of systematic treatment recommendations, one of the primary failings of 

common treatment recommendations is that they are based on statistical averages (e.g., “70% of people improve 

with medication X”).
5
 Practicing clinicians are keenly aware that treatments that have been shown to be highly 

effective in clinical trial and research populations are not always directly transferable to individuals in real-world 

settings.  Conversely, data mining models actually benefit from natural variation in clinical practice.  This is a major 

difference between evidence-based models and practice-based evidence, at least as they are currently conceived and 

implemented.  Ultimately, it is likely that greater utilization of evidence-based practices will depend on the 

incorporation of systematic adaptations based on practice-based evidence.  As LW Green noted, “what practitioners 

in clinical, community, and policy-making roles crave, it appears, is more evidence from practices or populations 

like their own, more evidence based in real time, real jurisdictions, typical patients, without all the screening and 

control …”
3 

The quickest way to disseminate research findings into practice is to build a framework that allows research 

to be conducted around ongoing clinical practice, without interfering with day-to-day clinical workflow.  The 

research can then be utilized to provide decision support and feedback functionality to clinicians.  We term this 

“adaptive” clinical decision support.  The approach here is moving toward such a framework.  However, it is fraught 

with many challenges.  First, while this paper emphasizes the adaptability of the system, one important consideration 

is the embedding of certain clinical standards around treatment.  In essence, this inserts hard-coded rules into the 

system, holding constant those treatment variables while varying other treatment recommendations around them.  

Indeed, experience at Centerstone has underscored how critical this ability may be to actual clinician adoption.  The 

system also needs to provide information to help support provider decision-making process, providing the right 

information at the right time in the right context.  The principles of mental workload and situational awareness 

(derived from human factors research) are critical in understanding how clinicians may interact with such 

information.   An engaging user interface that can incorporate clinical standards, provide appropriate information, 

and accommodate known human factor issues is key.
36 

 This approach focuses on creating an environment where a clinician’s natural course of adaptation is toward 

data-driven models.  In a sense, it relies heavily on natural evolutionary principles and less on artificial constructs of 

directly altering clinical behavior, the latter of which have been shown to have limited sustainability.
6
 While this 

may be a somewhat atypical approach to implementation, it parallels many current models of behavioral change in 
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psychotherapy, decision support technology implementation, and artificial intelligence.
36-38

  Utilizing an 

evolutionary construct invites application of a wealth of evolutionary models and mathematical constructs that, once 

adapted, may provide an analytical foundation for understanding the process of implementation in general. 

 The greatest challenge to this approach is building meaningful models for clinicians that answer relevant 

questions.  However, it also represents a significant opportunity to delve into more specific questions.  In the work 

described here, the initial model was constructed across all diagnoses - including diagnosis used as a predictor 

variable – but work is proceeding toward construction of models that make personalized clinical predictions within 

diagnostic-specific groups.  Furthermore, we are analyzing more finite considerations of clinical practice, moving 

from – “does the patient need medications?” – to “which medications are most likely to be effective for this 

particular individual?”  Mixing genetic (e.g. microarray) and clinical indicators, rather than using one or the other, is 

the most likely long-term avenue, although if and how these data sources should be combined is still a subject of 

intense debate.
18,19 

 One limitation of this approach is that it requires large populations, diversity in clinical practice, and 

reliable data.  A small medical practice or group practice might not be able to generate enough data to produce 

reliable and replicable findings. It is therefore important for small provider organizations to consider how to 

aggregate their data so that predictive models may be developed and fed back into local EHRs (for instance, via 

Health Information Exchanges [HIEs]).
39

 Privacy and security of health information will be paramount, so as to 

strike the optimal balance between protecting individual privacy and the collective benefit of data aggregation 

toward potential, meaningful advances in care. 

 The case study presented here demonstrated the feasibility of building clinically predictive models using 

data already existent in the EHR.  New studies are currently underway evaluating these approaches with patient-

reported outcomes and for data-driven decision support in controlled pilot settings for patients with depression.
40

 We 

are also developing a national data warehouse to share EHR data across several major mental healthcare providers 

from multiple states, in partnership with Centerstone Research Institute’s Knowledge Network, a technology-based 

alliance of providers, academic researchers, and industry leaders.   Funding is also being sought to develop a gene 

expression database on a large portion of Centerstone’s clinical population, likely starting with patients with 

depressive disorders or schizophrenia.  These efforts aim to improve and validate the approaches laid out herein. 
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 Implementation of EHRs is only the first step in using technology to advance health care, though that first 

step has proven to be challenging.  Indeed, even the popular media is picking up on this fact (“Little Benefit Seen, 

So Far, in Electronic Patient Records” New York Times, 11/15/2009).  Without actually modeling the data, an EHR is 

only informative of what happened in the past, not predictive of what might happen in the future.  Without that 

predictive capacity, it cannot be used by clinicians as actionable information.  In that sense, without predictive 

modeling/data mining, EHRs are essentially just copies of paper-based records stored in electronic form.  There is 

limited expected gain in terms of clinical outcomes, quality, and efficiency.  Predictive modeling/data mining turns 

an EHR into the decision support tool as was envisioned in the beginning, opening doors to possibilities for 

technologies to be built on top of the EHR that can enhance clinical care and improve efficiency.  These 

technologies include behind-the-scenes data infrastructures, warehouses, and potentially national repositories
11

 that 

ultimately merge research and practice into one cohesive process. 
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