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ABSTRACT

SONSAUHRAY C. PRICE-SAMPSON. On Single Equational-Axiom Systems for
Abelian Groups (under the direction of DR. M. RAJAGOPALAN). It is a facinating
problem in the axiomatics of any mathematical system to reduce the number of axioms, the
number of variables used in each axiom, and the length of the various identities, to a
minimum. In this thesis it is shown that a general Abelian group (G, +) can be defined as
a set G with a binary operation **' which satisfies only one equation of length 6. Six
equations in "' are given in this thesis each of which defines a general Abelian group. It is
also shown that among all possible equations in "*' with length less that or equal to 6, these
are the only equations that defines a general Abelian group.
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CHAPTER 1
INTRODUCTION

Let G be a set with a binary operation 'e' satisfying the conditions : -
l.ae(bec)=(aeb)ecVabceG
2. deeG suchthateea=a VaeG

3. aee=a VaeG
4 VxeG3Ix'esuchthat G xe x' =e
5.V xe@G, x'ex=e

We say that a group G is an Abelian (or communitive) group if in addition we have ae
b=b ea V abe G. Ifagroup G is Abelian we often denote the group operation by '+'
instead 'e'  To define an Abelian group we need six equations, and three operations,
binary, unary, and o-ary. We define a binary operation. Given two elements a,b in G then
multiply them together and we get some element c, this multiplication of two elements is a
binary operation. So a binary operation in G is a function f: G x G — G. We define an
unary operation. Given x € G we get x' e G. If we multiply the two we will get e.
Therefore an unary operation is the inverse of x. So here an unary operation in G is the
function f: G— G givenby fix)=x" V x e G. We define an o-ary operation. 3 e G
suchthat ee a=a V ae G. Now e exists in G. Interpret that you get e in G starting

from nothing given in G. So a zero-ary operation is a function f: & — G which is an

element of G.



In general given a set G and a cardinal number k, a k-ary operation in G can be defined
as a function from GxGxGx........ x G taken k-times into G. So using the language of
operations and equation we can say that a group is a set G with 3 operations, one binary,
one unary, and one o-ary satisfying 5 equations. An Abelian group can be thought of as a
set G with 3 operations, one binary, one unary, and one o-ary satisfying 6 equations.

Now we ask :
"What is the least number of equations and operations needed to define a group?"

(ie. What is the minimum number of equations needed to get exactly all groups?)

If we take group operation only then we can not get the operation “inverse" from the
group operation 'e' only using the repetition of ‘e’ any number of times. The reason is
that, if we can derive "inverse" from group operation only then we should be able to write
the number "-1" from the set Z* of integers = 0 by using '+ only, but that is not possible
since (Z*, +) is not a group. However if we take an Abelian group (G, +) and writea * b
=a-bV abe G, then we can recapture the operation '+ from the operation "' as
follows : a+ b =a * ((a * a) * b). (which is the same as sayinga+b=a- ((a-a) - b)).
Then we can write a single equation in '*' so that the recaptured group operation '+ from
' definedasa+b=a*((a*a)*b)V abe G will make G an Abelian group. So we
can define a general Abelian group as a set G with only one binary operation "' satisfying
only one equation. We also study the possible equations of the least length

that will define a general Abelian group.



This statement can also be written in the language of variety as follows : "The variety
of an Abelian group with one binary, one unary, and one o-ary operation, satisfies an

axiom system of equations. It can also be written as a variety with only one operation

satisfying only one equation."



CHAPTER 2

VARIETIES AND ALGEBRAIC SYSTEMS

DEFINITION 2.1
Let X be a set. An operation in X is defined to be a function £ X7 — X where Jis a

set. IfJ is empty we call f a nullary operation. If |J] =1 we call f a unary operation in X.
If |J| = 2 we call f a binary operation in X in general if |J] = o then fis called an a-ary

operation in X.

NOTE 2.1

A o-ary operation in X chooses a fixed element of X.

DEFINITION 2.2

Let G be a set with a collection of operations. A monomial in G is a finite composite
of finitely many operations in G. A monomial is also called a formula

EXAMPLE 2.1

Let (G, *) be a group. Let us call the binary operation x * y as f{x,y). Let us call the
unary operation x! as g(x). Let us call nullary operation as '¢’. Then the expression (x

y') x? is a monomial in G. For((xy") x* =f (f (x, g(y), f (x,X)).

DEFINITION 2.3
Let X be a set. Let Jalsobe a set. For every O € J let there be a cardinal K and an

Oi-ary operation in X. An equation in X is an expression of the form m = n where m,n are



DEFINITION 2.3

Let X be a set. Let J also be a set. For every O € 7 let there be a cardinal K, and an
Ol-ary operation in X. An equation in X is an expression of the form m = n where m,n are

monomials in X. An equation is also called a law or an identity.

EXAMPLE 2.2

Suppose that X is a set, with two binary operations '+' and '®' then (x; +x2) ®x3 = (x;
® x3) +(x2® x3) is an equation in X. X; + Xz ®X3 = (X1 *X2) @ X3 is not in equation X,

because on the left hand side the operations are not well defined.

DEFINITION 2.4

A variety is a set X with a finite collection of operations, satisfying a finite set of
equations.
Examples of varieties :
1. Groups.
2. Abelian Groups.
3. Rings.
4. Communitive Rings.

5. Lattices.



DEFINITION 2.5

Let V be a variety. We say that V can be expressed as a single equation system if the
following holds : -
For each G in V we can find an operation "' in G and one equatibn 'S'in "*' so that we
have the following : -
1. The operation "' is obtained as a formula in G, with it's operations in V. That is, ™' is
obtained as a composite of finitely many operations in V.
2. The equation 'S' for the operation "' should be derivable from G, with it's operations
and equations as a member of the variety V.
3. The operations in G as a member of V should be formulas in "*'.

4. The equations in V that G satisfies should be derivable from G with *' and 'S’

In the introduction we raised the question "Can an Abelian group be defined by a single
operation and a single equation?" Since that is the theme of this chapter we explain below
what we mean by "An Abelian group can be defined by a single operation and a single
equation." We say that an Abelian group (G, +) can be defined by a single operation and a

single equation if the following holds : -

For any Abelian group (G, +) an operation '*,' can be defined on G, where the

operation '*,'
(**,' depends on all the operations binary, unary, and nullary defined in (G,+)) is defined by

a formula involving the operations in (G,+) so that we have :



1. All the operations '+' (Binary), '-' (Unary), and '0' (Nullary) in (G,+) can be expressed

as formula in "*.".

2. (G,*,) satisfies one equation S.

3. For every (G,*) satisfying S the associated (G,+) (which is obtained from "' as in 1) is

an Abelian group.

THEOREM 2.1

Let (G,+) be an Abelian group. Puta*b=a- b=a+(-b)V ab €G. Then"™isa
binary operation in (G,+) defined by using the binary operation '+' and unary operation '-'
in (G,+).

We don't give the proof since the statement is clear.

THEOREM 2.2
Let (G,+) be an Abelian group. Let '*' be the associated binary operation in G defined

in theorem 2.1. Then we have : -

Lx*@Z*@y*x*2)=yV xyz€ G
2.(x*z*y) *(x*2)=y V xyz €G.
3.(x*((x*2)*y)*2z=yV xyz€ G
4. (x*2)*(x*y*2)=y Vxyz G



Using the fact that (a *b)=a-bV abe Gwegetx*(z*(y*(x*2)=x-(z-(y
- (x - z)) =y which is 1. 2,3,4 follow likewise.

LEMMA 2.1
Let (G,+) be an Abelian group. Let ' be the operation defined in theorem 2.1 asa * b
=a-b VY abe G. Thenwe have: -
l.a*a=0 whereae G.
2.a*((a*a)*b)=a+bVabeG
3.(a*a)*a=-a Va€egG
Thus the binary operation '+, unary operation -, and nullary operation '0' (identity of

(G,+)) can be obtained as formulas from (G.*).

DEFINITION 2.6

Let (G,+) be a set G with a binary operation ™. Weputae b=a™ ((a* a) *b) YV ab
€ G. If(G, °) is an Abelian group then (G, *) is called an a ®a egroup (a ®a e group

stands for associated Abelian group).



THEOREM 2.3 (PADMANABHAN [P])

Let G be a set with a binary operation "*'. Then the following are equivalent : -

1. (G, *) is an a ea egroup.

2.x*Z*y*x*2))=yV xyz €G.
3.x*z*y)*(x*2)=y Vxyz € G
4. x*(x*)*y)*z=yVxyz € G
5. x*2)*(x*y)*2)=yVxyz € G

PROQF;
We prove that 1= 2.

Letx,yze G

Now

X*@z*(y*x*2)
=x*(z*(y * (x - 2))) (for a * b= a-b if (G, *) is an a ®a egroup).

=x*(z*(y-(x-2))
=x*(z*(y-x+2))
=x*(z-(y-x+2)
=x*(z-ytx-2)
=x*(x-y)
=%x-(x-Y)

=y'



We prove that 2 =3.

Nowby2wehavex* (z*(y*(x*z))=yV xy,z€ G. Letxy,z€ Gputz= z
*(y*x)andy=yand x=xin2. We get

X* (2% (7 * %) * (% () * (2% (y * X)) = yorermeA,
Note

y*(x*(z*(y*x) =zbyequation 2.
So equation A reads

X * (2 * (§ * X)) * 2) = yoeomeomoees B

Note that x,y,z are arbitrary in equation B, so B can be written as

Puta=x*(z*y)andb=yandc=zin C. We get
(*E@* ) * (@* ¢ * &k * @*y)) * 2 =y—--D.
Now (z* (y * (x * (z * y))) = x by 2. Therefore D becomes

(x*(z*y))*(x*z)=ywhichis 3.



Prove that 3= 4.

PROQE:

Notice that if we assume 3 then (G, *) is left cancellative (ie. if a,b,c€ Ganda*b=a2a * ¢
thenb=c). Forletabce Gandleta*b=a* c---m-mmm-- E. Choose somed € G. Then
(d*(a*b)*(d*a))=(d*(a*c)) *(d*a)byE. But((d*(a*b)) *(d*a))=bby3.

Similarly (d * (a * ¢)) * (d *a) =c, so E gives b = c. Therefore ( G, *) is left

cancellative. So we have the equation

(@a*(c*b)*(@@*c)=bV abce G-mmmmmv 3
and the left cancellative law namelya*b=a*c=b=cV ab,ce G
Letde Gputa=c*(b*d)in3. Weget
(c*®b*d)*(c*b)*((c*(d*d)*c)=b
Now by 3 we have (c * (b * d)) * (c *b)=d.
Therefore d * ((c * (b * d)) * ¢) = b---------- F.
Therefore d * ((a * (b *d)) *a)=d * ((c * (b *d)) * c.
Therefore (a * (b *d)) *a=c*(b*d)) *cV ab,c,de G--------- H, by left cancellation
of *' Nowletse G. Puta=b* (d *s)in H. We get

(b*@*s)*®*d)*b*d*s)=(*d*d)*c



Using 3 we get
s*(b*(*s)=(C*(®b*d)*cV b,c,d,s e G-----—--—--- T,

Puts=c* (b*d)inl. We get

c*b*d)*b*d*(c*®*d))=(*(@®*d)*cV b,cde G---m--mmm- ,

By cancellative law '*' we get from J
b*(d*(c*(b*d))=cV b,c,de G--mmmmmmm- K (which is equation 2).
Replaceb=y,d=t, and c=xin K. We get
y*¥**x*(y*t)=xVxyte G---mmmmm- L (which is equation 2).
Nowletr,ze G. Putt=r*(z*(y*r))inL. We get
y *t =z by 2. Furthur we have
y*(r*@*@*n)*x*2)=x
Put x = (y * y) in last equation. We get
y*((*E**oN* (v ** ) =y*y.
So(r*@*(y*n)*(@*Y) *2)=y.
So(r*(z*(y*n)*((z*2)*2)=y.
Put r = z * z in last equation. We get
(*2)*E**E*IDMN*(z*2)*2)=y.
So using 3 we get y
y* (2% 2) = y-memmees 0.
Sox*(x*z)=x*Ez*z) *x*z)=2by3. Weget

X *(x*z) =z P.

10



Now using 3 we get
E*((x*2)*y) *x*(x*2)=y.
So (x * ((x * z) *y)) * z=y which is equation 4.
Now we prove that 4=5.
Soweassume that (x * ((x*z) *y) *z=yV xyze G
Putz=(x*y)*tin4 wherete G. We get
E*(x*(*N*N*y) *(=*y)*)=y.
Using 4 we get
(x *t)) * ((x *y) * t) =y which is equation 5.
Now we prove that 5 =(G, *) is an aea e group.
So we assume that
x*z2)*(x*y)*2z)=yVxyze G- 5.
Putz=x*yin5 we get
(x*(x*y)*((x*y)* (x*y)) = y-—--AlL.
Replace x by x * yin A,. We get
(x*y) * (x**)*(x*Y* ) *((x*y)*y)=y.
Using 5 we get
y*x*y) *y) *((x*y) *y) =y A,
Put ((x *y) *y) * ((x * y) * y) = &(y,x)-=------- A, We get
¥ ¥ ey, X} =y A,
Now put y = e(x,y) and z = e(x,y) in 5. We get

(x * e(x,y)) * ((x * e(x,y)) * e(xy)) = e(x.y).

11



So using A, we get

So A, gives that y * e(y) = y---------- A,

Now

X *x = e(x,y) (from A,)
=((y *x) *x)* ((y * %) * x) (from A,)
=((y *x) *x) * ((y * %) * e(y *x)) * x) (from A;)
=e(y *x) from 5
=(y *x) * (y * x) (from A, and A;)
=(y *x) * ((y * e(y)) * x) (from A;)
= e(y) from 5.

So e(x) does not depend on x.

So e(x) is a constant.

We put e(x) = e----------A,, s0 we get
e Ay, (from A, and A,)
And
X * X = g-mmmmmmmem A, (from A,).

Putz=ein5. We get
(x*e)*((x*y)*e)=y------m-m- A,
Using A,,. We get
X * (X *y) = ymmmmmmmmmeee A,
Put x *yforyin 5. We get

(x*z)*((x* (x*y)*2) =X * y=-mmmoomen Ay

12



Using A, . We get
(R*D)* (¥ 2) = *yoAyy

Now we give our own proof of the fact that 5 = 1 which is new. We go through the
following steps.
Now in A put z=x. We get
x*x)*(y*x)=x*y.
So
€% (¥ * %) =X * yoremeeenr A (from Ay).
Putting y = e we get from A, that
e*(e*x)=x%*e=xX---mmomm- A,
Now recall that the associated group operation 'e' in G is defined by
xe y=x*((y*) *y) Vxy€ Gromrmms Ayg -
So we have that
xee =x*((e*e)*e)
=x*(e*e) (fromA,,)
=x*e
=x (from A,)).
Similarly
ee x=¢*((x *x)*x)
=e* (e *x)(fromA,)
=x * e (from A,y
=x (from A,)).
So

xoe=¢0 x =XV X€ G----------A .



Clearly xe ye GV x,y € G---------- A,

If x € G then put x' =€ * X--mmnm-mm- A,

Then

xex =x*((x'*x")*x")
=x* (e *x") (from A,))
=x*(e* (e *x))(fromA,)
=x¥*(x*e) (fromA)
=x*x (from A,)

=¢ (from A,)).
So
xexX!=g V¥ xE Geoounnaus A,
Now
x")'=e*x' (fromA,)
=e* (e *x)(fromA,))
=x (from A,,).
So
x'ex=x"o(x")’
=e (from A,)).
So
xe x'=x'ex=¢ V x€ G----mmmmmm- A,

Now we have that

ifx,yze Gandx*y=z*ztheny=2z.
Forif(x *y)=x*zthenx * (x*y)=x*(x* 2)
Hencey =2z (fromA,).

So
l!x*yzx*z":; "y=z" ----------- A26'




Now let x,y,z € G.

Lety*x=z*x

Then

e*(x*y)=e* (x*2z) (fromA,).
So

x *y=x*zsoy=z(fromA).
So

P T R — B
Now let x,y,z € G.

Then (x * z) * ((x *y) * z) =y (from 5).

We also have (x * z) * ((x * z) *y) =y (from A,,).
So

x*zZ)*(x*y)*2)=(x*2)*((x*2) *y).
So

(x*y)*z=(x*z)*y Vxyze G(from A,,).

Thus we have
(x*y)*z=(x*2) * yoorrmehyy
Now let x,y € G.

Then

xey=x*(e*y)
=e*((e*y)*x) (fromAy)
=e* ((e*x)*y) (from A;)
=y * (e *x) (from A,
= yex (from definition of 'e").

15



So
XOY = YO X-ommmmmmnn A
Now let x,y,z€ G.

Then

(x*y)*(x*z)=(x*(x%*2)*y(from A;)
=z *y (from A),).

So
X*y)*(x*2)=2*yV %,z € Gmmmmmv A,

Now let x,y,z e G.

Then
xe (y ez) =x * (e * (ye z)) (from definition of 'e')
=x*(e*(y*(e*2))
= x * (e * z) *y)) (from A,
=((e*2)*((e*2) *x)) * ((e *2) *y) (from A,;).
So
xe (yez)=((e*z)*((e*2)* x))*((e*2)*y)
=y * ((e * 2) * x) (from A,).
So
xe (v 2) =y * (¢ * 2) * X))-rmmrrr-Ayy
Now

(xo y)oz=(x* (e *y)) 2
(x*(e*y) *(e*2)

(e*2)* (e *2) * X)) * (e *y)) * (e * 2) (from A,,)
((e*2) * (e *2) * %) * (e * 2)) * (¢ * y) (from A,,)
=((e* D) *((e*2)*x) * (e * 2) * &) * (e * y) (from A,)
=(e* ((e*2) * X)) * (e * y) (from A,)

=y * (e * 2) * %)) (from A,).

(1|

16
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So
(xo y)o 2=y * (& * 2) * X)-rmmremes Ay,
So from A, and A,, we get
xe (yo z) = (x® y)® z-------mm- Ay,
So we get from A, A, A,,, A, A,, Ayand A, that (G, e) is an Abelian group. Thus
we have proved that 5 = (G, *) is an a ea egroup.
Hence we have proved theorem 2.3.
The equations A, to A,, are new and to our knowledge are not found in any previous
publication. Thus we supply in part, our own proof of Padmanabhan's Theorem (see [P])

which is theorem 2.3.

THEOREM 2.4 (Sholander) [Sh]: -

Let G be a set with a binary operation ' *'. Then (G, *) is an a ea egroup if and only if
wehavex * (x*z) *(y*z)=y Vxyze G
PROOF : -

Let (G, *) be an ae a egroup thena * b=a - b in the associtated group theoritic
language. Sox* (x*2)*(y*2z)=x-((x-2)-(y-2) =y V x,v,z€ G. Conversely,
suppose that x * (x *z) * (y *2)) =y V xy,ze G. Then we notice that givenx,ye G
there is an element u € G so that x *u e G. For, we have to only putu=((x * z) * (y *

x)) and use the given equationx * (x * 2) * (y * 2)) =y vV xy,ze G
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Let us put

X *((x*z)*(y*z)) =y as equation S.
Then we have

E* (2D G*2) * 2=y ¥z S,
Putu=y*zin S, We get

x*((x*z)*u))*z=u Vxy,z € G--mommmm- S,.

But S, is same as equation 4 of Theorem 2.3. So by theorem 2.3 we get that (G, *)isan a

® a egroup.
THEOREM 2.5

Let (G, *) be a set G with a binary operation "*'. Then (G, *) is an ae ae group if and

onlyif x*((z*y)*(z*x)=yV xyze G

PROOF ; -

Let (G, *) be an ae ae group. Thena * b=a - b in the associated group theoretic
language forallabe G. Sox*(z*y)* z*x)=x-((z-y)-(z-X)=yV xyz€
G. Conversely letx * (z*y) * z*x)) =y V xy,ze G. We put the equation x *{(z™
¥) * (z * x)) = y as (H-N). Now suppose that a,s,te Ganda*s=a*t.

Then we have that
a*((a*s)*(a*a))=s----m--mm- (H-N,) (by using H-N).
Similarly we have

a*(@*t)*(a*a)=te-mmmmmmv (H-N,).
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Sos=tsincea*s=a*t So'*isleft cancellative. Futhur, we see thatif x;y € G are
given then putting u = (x * y) * (x * x) and using (H-N), thatx *u=y.
Now let x,y,z € G. then we have
X* (@ *Y) *(2* X)) =y (HN),
So
z* x>z " ) * @M Ry =y (H-N,).
Put z * y =u. then
2% (x* (u* (2% X)) = Uereeemee (HN,).

This is same as equation 2 of theorem 2.3. So (G,*) is an a ea egroup by theorem 2.3.

NOTE 2.1

Sholander [Sh] proved theorem 2.4. G. Higman and B.H. Neumann [H-N] proved
theorem 2.5. We did not access their papers. Our proof for theorems 2.4 and 2.5 based
on Padmanabhan's theorem 2.3 is new. The proof of the part that 5 = 11in
Padmanabhan's theorem 2.3 is also new. Padmanabhan used theorem 2.4 of Sholander to

show that 5 = 1 in theorem 2.3. The proof given here for that part of theorem 2.3 is fairly

elementary and self contained and does not use Sholander's theorem 2.4
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NOTE 2.2

In the theorems 2.1, 2.2, and 2.3 the operation *' in (G, *) was defined from the

operations of group (G, +)asa *b=a-bV ab e G But we can define many binary
operations in G starting from a group (G, +). For example wecanputa*b=b-a V a,
b e G. Now we can ask, if we are given a binary operation *, 'in G using '+' and -' in G
then whether we can find a single equation S in *, so that (G, *, ) with equation S will
define a general Abelian group similar to the case of (G, *) as in theorem 2.1, or theorem
2.2, or theorem 2.3.

More generally we can ask the question "What are all the binary operations # that can
be defined in G as formulas in the operations of a general Abelian group (G, +) so that a
single equation in (G, #) will define a general Abelian group as was the case of (G, *) in
theorem 2.1. So the following deep theorem of B.H. Neumann is significant (See B.H.

Neumann topics in algebra, universal algebra 1962).

THEOREM 2.6 (B.H, Neumann)

Let (G, +) be a general Abelian group. Let # be a binary operation in G defined as a
formula using the operations in the Abelian group (G, +). Suppose that there is a single
equation S in (G, #) so that (G, #) with S defines a general Abelian group canonically.
(that is the operation of (G, +) are formulas in (G, #)) and (G, +) is an Abelian group).
Thena#b=a-bVabe Gora#b=b-a Vabe G

We do not give here the proof of this theorem.
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NOTE 23 ; -

Earlier we saw that if (G, +) is a general Abelian group and "' is the binary operation
defined in theorem 2.4 as a formula in the operations of (G, +) then a single equation S in
"*' defines (G, +). Theorems 2.1, 2.2, and 2.3 together give 6 such equations in "*' each of

which defines the operation of (G, +) as formulas in ™' and (G, +) so defined is an Abelian

group. We can ask the following questions.

QUESTION 1
Let (G, +) be any Abelian group and "' a binary operation in G defined as a formula in
(G, +). Suppose that "' defines all the operations of the group (G, +) as formulas in "*'.

Then what are all the equations S in (G, *) so that if (G, *) satisfies S then the associated

(G, +) is an Abelian group?
QUESTION 2

Let (G, +) be a general Abelian group. Let " be a formula in (G, +) asin question 1.
What are all the equations S in the binary operation *' defined on the set G so that Sisin
some sense the shortest equation in "*' and the associated (G, +) as in question 1 is an
Abelian group?

We answer question 2 in the next chapter completely. We make the meaning of
question 2 more precise and prove that the six equations of theorems 2.1, 2.2, and 2.3 are

the only shortest equations in (G, *) that define a general Abelian group.



CHAPTER 3

THE EQUATIONS IN "*' THAT MAKES THE ASSOCIATED (G, +) AN

ABELIAN GROUP.
DEFINITION 3.1
Let '"*' be a binary operation in a set G. Let f{x,,X,........ x_) be a monomial or a formula
in (G, *) in the variables X,X,,......... ,X_. We call the formula f as a word in X;,X,,........ X,
in (G, *).
DEFINITION 3.2

Let (G, +) be an Abelian group. Let '*' be a binary operation in G defined as x *y=x
-y V x,y € G, where '-'is the inverse in G. We call (G, *) as having been defined

canonically by (G, +). We say that (G, +) is defined canonically by (G, *) if all the
operations of the Abelian group (G, +) are words in (G, *) and the (G, +) so obtained
from (G, *) is an Abelian group and '*' coincides with the binary operation '#, defined
canonically by the group (G, +) obtained from (G, *).
DEFINITION 3.3

Let (G, *) be a set G with a binary operation "™*'. Let f{x,X,,......... ,x_) be a word in (G,
*) in the variables x,,x,,........ ,x.. Then the length of the word f'is the total number of times

the variables x,,x,,........ ,X_ appear in f.
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EXAMPLE 3.4
Let (G, *) be a set with a binary operation '*'. Then the word (x, * x,) * x, is a word in
X,,X, but of length 3 since the total number of occurrences of the variables x,,x, in that

word is 3.

DEFINITION 3.5

Let (G, *) be a group in the binary operation *'. Let 'w'be a word in (G, *) in the
variables x,,X,,....... ,x.. Then the sum of the powers of all the variables in w is called it's

degree.

EXAMPLE 3.6

3.6

Let (G, *) be a group. Let w be the word x, *x”, *x,in G in the variables x,,x,. Then

it's degree is 1 + (- 1) + 1 =1. The degree of x,” * x?, * x, is 0.

DEFINITION 3.7
Let (G, *) be a set G with a binary operation "' An equation in (G, *) or an identity in
(G, *) or a law in (G, *) is an equation of the form m =n where m,n are words in some

variables x,,x,,....... X, of G.



23

EXAMPLE 3.8

Let (G, *) be a set with a binary operation "*'. Then (x, * x,) * X, = X; is an equation in
the variables x,,X,,x, in (G, *). Notice that we do not demand the occurrence of every
variable in both sides. Similarly x, * (x, * x,) = x, is also and equation or identity or law in
(G, *) in the variables x,,x,,x,. However x, * x, * X, =X, is not an equation in (G, *) since

without brackets the left hand side is not well defined and hence is not a word in (G, *).

DEFINITI

Z,
o

Let (G, *) be a set G with a binary operation *'. Let m =n be an equation in G. Then

the length of this equation is (length of m) + (length of n).

DEFINITION 3.10

Let (G, *) be a set G with a binary operation ™'. Let S be an equation in "*'. The triple

(G, *, S) is called a single equational system. It is said to define a general Abelian group if

the following hold : -
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1. There exist formulas f,,f, in (G, *) so that f, is a binary operation, £, is an unary
operationin G. Weputf, (x,y)=x+y Vxye G

2. (G, +) is an Abelian group with f,(x) as inverse of x V xe€ G.

3. The operation '*' coincides with taking difference in (G, ). Thatisa*b=a-bV ab
€ G. Thus the law S should be satisfied in every Abelian group G where *' is taken

as -.

4. For every Abelian group (H, +) the equation S is satisfied in (H, *) if we interpret a *b
=a-b VabeG

We say some times that S defines a general Abelian group if we know (G,*).

We give some single equation systems which do not define a general Abelian group.

EXAMPLE 3.11
The equation x, = x, in set G with a binary operation *' does not define a general

Abelian group. For if we start with any Abelian group (G, +) and take "*' 35 '-' then the

equation x, = x, is not true V x,,x, € G unless G is a singleton.

EXAMPLE 3,12
The equation x * x = x in (G, *) does not define a general Abelian group where (G, *)

is as in example 3.11. For we do not have x - x = x for all x in every group G.
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EXAMPLE 3.13

The equation x * x =y * y in (G, *) does not define a general Abelian group where (G,
q

*) is as in example 3.11. For take an infinite set G with the operation ™' defined as x * y =

a V x,ye G. Where 'a' is a fixed element of G. Clearly it is not possible to find a group
operation '+ in G so that x-y=2a V x,ye G. Hence (G, *, S) can not define a general

Abelian group.

NOTE 3.14

The single equational systems (G, *, S) defines a general Abelian group where S is one

of the equations in theorem 2.1 or theorem 2.2 or theorem 2.3.

THEOREM 3,15

Let (G, *, S) be a single equational system that defines a general Abelian group. Let
the equation S be f{x,,X,,.... X,) = 8(X;,X,.....X;) Where f,g are words in the variables
X,,X,,....X_. Then either f(x,,x,,....X,) =%; for somei= L2 ismems B il T T A
x, for somei=1,2,.....,n. Inother words both the sides of the equation f = g can not

have length strictly greater than 1.
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Suppose that both sides of the equation f = g have length at least 2. Take an infinite
set X. Fix some element 'a'in X. Putx*y=aV x,ye X. Then (X, *) satisfies equation
S. But clearly the '*' for this X cannot be the operation '-' in some Abelian group

operation '+' on X. Hence the theorem.

THEOREM 3.16

Let (G, *, S) be a single equational system that defines a general Abelian group. Let 'S’
be of the form f(x,,x,,.....x ) =%, forsomei=1.2,....... .n. Then f cannot be independant of

x, . That is x; should be present in the monomial f.

PROOQOE : -

Suppose 'x;' is not present in f. Take an infinite Abelian group G. Fix some element a

G Pat %, =0 , % = 8, Koy =81 o Bpuq T By st x, = a, and X arbitrary in the

Bation fx gt .o x)=x. Wegetfla,a,..2a)=%. SOX is a constant where x, €

G. That is G is a singleton which is not the case. So x; should occur in G.
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:
:
5

|

Let (G, *, S) be a single equational system which defines a general Abelian group. Let
S be of the form f(x,,x,,.....X,) = X, where fis a word in variables x,,x,,.....x, and i =

| [ F— ,n. Then x, cannot be either the first or last variable in f.

Suppose that x, is first variable of f. Take an infinite set G with a binary operation *
defined by x * y=x V x,y € G. Then the equation f{x,,x,,.....x,) = X; is satisfied in (G,
*). But we cannot have an Abelian group structure '+' on G so that when "' is interpreted
as'-' of Gthen x-y=x V xye G. sof(x,,x,,....x,) =X cannot define a general

Abelian group. The same kind of argument applies to the case when x. is last variable in f.

THEOREM 3.1

[v]

Let (G, *) be a set G with a binary operation *'. Let fbe a monomial in an even

number of variables x,,X,,.....X,. Then the equation f(x,,X,,.....X,) = X; cannot define a

general Abelian group where 1< i < 2k. Similarly if g is a monomial in x,,X,,.....X, and

degree of g # 1 then "g = x." cannot define a general Abelian group foranyi=12,...... .
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Suppose that f(x,,x,,.....x, ) =%, defines a general Abelian group where 1 <i<n.
Then the degree of fis even. But degree of x,is 1. So f{x,X,,.....x,) =X, cannot define a

general Abelian group. The statement on g is proved similarly.

THEOREM 3.19

Let (G, *) be a set with a binary operation "*'. Let f(x,,X,,......,X,) =%; define a general
Abelian group where fis a word in (G, *) and 1 £i< n. Then f cannot be of length one or

two or three.

Suppose that f'is of length 1. Then f can contain only one variable. Let us call it x,.
then f{x,) = x, since x, is the only monomial in x, of length 1. So the equation
Lo T ,X,) = X, becomes x, = x, in this case. Obviously (G, *) with the equation X, =
X, cannot define a general Abelian group as is seen by taking the set N of natural integers
{1,2,.....n....} with usual addition as the operation "*'

Suppose that fis of length 2. Then f cannot have more than 2 variables in it. Since fis
also a monomial we have that either

1. f=x *x, or 2. f=x"*x
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suppose that f=x, * x., Then the equation f=x, (withi=1 or 2) is either
la. x,+% =%, or Ib. x, +x,=x,
neither 1a nor 1b can define as a general Abelian group by theorem 3.17 (or we can use
theorem 3.18 also). Similarly 1b also cannot define a general Abelian group.
Now suppose that f has length 3.

Then f cannot have more that 3 variables in it. Let ﬁs write down all the possible
words of length 3 in (G, *) which contain 3 variables. We have that the only possible such
f's are (except for a permutation): -

I f=(x,*x) *x,

II. f== *x “%)
Notice that other formulas for f obtained from I and II by permuting x,,x,,x, do not give
any essentially new cases for f to discuss. In case I the equation f=x, is possible only
fori=1,2,3. Soin case I we can have only the following 3 equations for f=x; namely : -

Ta. (x, * %) * %, =%

Ib. (x,*x) *x,=%,

Ie. (x,*x,)*% 5%,
Now we can argue in different ways why none of the equations Ia, Ib and Ic above can
define a general Abelian group. We give below some of those different arguments
because they will be used again and again to discuss possible equations f=x, with f

having length greater than 3.
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ARGUMENT 1

We calculate the degree of (x, * x,) * x, which is f. So we should write (x, * x,) * x,
in group theoretic terms and calculate the degree of the monomial we get in group
theoretic language corresponding to (x, * x,) * x,. To avoid confusion in the calculation
of degree it is better to think a * b = ab™ instead of a* b=a-b. So (x, *x,) * x,
becomes (x,x",) x';in group theoretic language. So it's degree, which is the sum of the
exponents, is '-1'. so theorem 3.18 gives that none of the equations Ia, Ib, Ic can define a

general Abelian group.

ARGUMENT 2 (Reducing variables in f)
Neither equation Ia or equation Ic can define a general Abelian group by theorem 3.17.

so we discuss the equation Ib only. Assume that the equation Ib defines a general Abelian
group. Then Ib should be true in all Abelian groups when we writea-bfora*bV abe
G. Now Ib becomes (X, - X,) - X, = X, in group theoretic language. We have the freedom

to make some pairs of the variables x,,x,,x,, equal. So if we want (x, - X,) - X; = X, in an
Abelian group for all x,,x,, and x, then x, must be equal to x,. But then the equation (x, -
X,) - X, = X, reduces to the equation -x, = x,. (notice we have removed x,,x,, from f).
Clearly -x, cannot be equal to x, for all x, in a general Abelian group. So Ib also cannot
define a general Abelian group.

We come to the other case II namely f=x, * (x, * x,). As we did in case I and
following the, steps in this case also we show that II cannot give an equation in (G, *) that

defines a general Abelian group.
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STEP

Lis all possible equations f= X, where f=x, * (x, * x,) as in case II. At this step we get

that the only possible equations for f = x, are the following : -

IMa. %, *(x,*%)=x%
Ib. x, * (x, * %) =x,

Ilc. x, * (x, *x)=x,

STEP IT

(This consists of the following : - Take one equation at a time. Apply theorem 3.17 or
theorem 3.18 to possibly eliminate it. If they do not help, then go to the group theoretic
form of that equation and reduce the number of variables by making some pairs of
variables equal and decide). Now Ila and Ilc cannot define a general Abelian group by
theorem 3.17. Now IIb becomes x, - (X, - X,) = x, in group theoretic terms. This cannot
be true for all x,x,,x, in all Abelian groups unless x, = x, = x,. But then the equation IIb
reduces to x, = x, which cannot define a general Abelian group. (we saw earlier, a proof
of this fact). So in case IT also we see that none of the equations f=x, can define a

general Abelian group.
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We want to discuss whether any of the equations of the form f=x, in ( G, *) can
define a general Abelian group with f having length 4 or 5. We follow the same pattern of
discussion in these cases as we did the theorem 3.19 for the cases when f has length 1,2,
or 3. Note that the proof of theorem 3.19 started with giving all the possible formulas for
fin case the length of fis 1,2 or 3. We do the same for the discussing the equation f=x,

with length of fbeing 4 or 5. So we prove the following theorem.

Let (G, *) be a set with a binary operation '*'. Let f be a monomial in (G, *) of length
4. Let g be a monomial in (G, *) of length 5. Then f has to be one of the following F -1

to F - 5 below and g has to be one of G- 1to G - 14, upto a permutation of the variables.

f=((x, *x) *x,) * x=---m-m-- F-1
f=(x, *x,)* (x; * x,)-——------ F-2
f=(x, * (x; * X)) * Xm=mmmmmmmv F-3
f=x*((x; * X;) * x,)-=mmmmm F-4

£=%, % (%, * (% * %)-mrmmeems F-5



B =((0x; * %) * ) K * Kmememas G-1
g = ((x ¥ %) * %)) * (x, * X;)=mmmmmmev G-2
g =((x *2) ¥k F ) ¥ gpeee—e G-3
g = (% %) * (%5 % X,) * Xg)-mmmmmms G-4
g = 0% % %) * (% % (x, ¥ Xg))mmmmmemee G-5
g = ((x, * (%, * X)) * %) * Kyormmrmenen G-6
g =05 ™ (X % %)) * (%, * Xg)-mmmmmme Gz
g =1z * {x * &) *2)) * 21— G-8
g8 =% ((* %) * X)) * Xg)----mmee- G-9
g =% (05 % %) * (%, * Xg))----------G - 10
B = (% * (5, * (%, * X)) * Xyrwmememees G-11
g =% *((x, * (%, ¥ %) * Xg)---mmmmmm- G-12
B =X (% % ((x; ¥ x))* Xg))---mmmmmee G-13
B =% % (% (% * (% ¥ X))o G-14

PROOEF ; -

The proof is given by a complete exhaustion method of all possible parenthesis

schemes using the given variables to get the possible formulas.

33
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[38]
Yo}

Let (G, *) be a set G with a binary operation '*'. Let f be a nominal of length 4 in ( G,

*). Then no equation of the form f{x,,x,,x,,x,) = X, can define a general Abelian group

wherei1=1,23 4.

Take an equation of the form f(x,,x,,x,,x,) = x, where fis of length 4 and i = 1,2,3,4.
Then fis one of F - 1 to F - 5 of theorem 3.21. Now the degree of each of the F - 1 to F -
5is-2 or 0 or 2. So, an application of theorem 3.18 shows that none of the equations of
the form f(x,,x,,x;,x,) =%, withi=1,2,3,4 and f having length 4 can define a general

Abelian group.

Now we discuss the question of which equations of the form f=x; in (G, *) can define

a general Abelian group when (G, *) is as in theorem 3.22 where fis a word of length 5 in

%1
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NOTATION 3.24

Let (G, *) be as in theorem 3.22. We put P-1, P-2, P-3, P-4, Sh and HN as follows : -

x*¥*z*y*(x*z))=y Vxyz e G- P-1

x*@*y))*x*z)=y Vxyz€ G---omoeem- P-2

X* (X *D)*y)* 2=y V X3,z € Grerroemem P-3

x*D*(X*V)*2)=yV %y2 € Goreereeo P-4

X*(x*2)* (1 *2)=y V %3z € GerereeeneSh

x*¥(Z*Y*(z*x)=y Vxy,z € Gommmmomem- HN
NOTE 3.25

Let (G, *) be a set G with a binary operation "™'. Then there is no equation of the form
f(x,,x,,...... ,X,) = X, where fis a monomial of length strickly less than five and which
defines a general Abelian group. This was shown in theorem 3.22 and theorem 3. 19, we
also saw that Padmanabhan [P], Sholander [Sh] and Higman-Neumann [HN] showed that
each of the equations P-1, P-2, P-3, P-4, Sh and HN defines a general Abelian group and
the left hand side of each of the above equations is a word in (G, *) of length equal to 5.
Now we are going to show that P-1, P-2, P-3, P-4, Sh and HN are the only equations in
(G, *) of the form f(x,,x,,.......,x ) =X, which define a general Abelian group and also
such that f'is a word in (G, *) of length 5. We prove two theorems before we give the
final theorem on finding all equations of the form f=x; with f having length 5 and also

defining a general Abelian group.
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HEOREM 3.26

e

Let (G, *) be a set with a binary operation . Let f be a word in (G, *) in the variables

o, T .. Let'i' be an integer so that f = x; defines a general Abelian group 1<1<n.
Then there exist two variables besides x; which do not occur asy * y in f. In other words

if variables except x, and one more variable occur only as y * y in f then f = x; cannot

define a general Abelian group.

PROOE ; -
Suppose that f=x, defines a general Abelian group. Furthur assume that all variables
'y' other that x, and one more variable, say x,, occur only as y * y in f. Without loss of

generality we can take x, = x,. So fis of the form f{x,,x,,x,*x,,...,x,*x,). Note thaty ¥y

=x * x for all x,y in G because f defines a general Abelian group. Now take the system 2,

of equations

(0. %%, %%, %, KKy ¥ ) = X

(). x*x=y*y

In (G, *). Then X, is logically equivalent to the single equation f =X, But each equation
in X, has no more than 2 variables. This is not possible which is a result of Mckinsey and

Diamond[M-D]. So we have theorem 3.26.
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THEOREM 3.27
Let (G, *) be as in theorem 3.26. Let i be an integer and 1< i< 5. Let f{x,,X,,X;,X,,X,)
=%, *((x, * (x; *x,)) * x;). Then f=x, cannot define a general Abelian group.

Suppose that the equation x, * ((x, * (x, * x,)) * X;) = X, defines a general Abelian
group for some i = 1,2,3,4,5. Now the group theoretic form of x, * ((x, * (x; * x,)) * x;)

is x, +x, +,-x,-X;. Soifthe equation x, + x, + X, - X, - X, = X, holds for all x,%,,%;,X,.X;

and in all Abelian group theni= 3. In this case we must have one of the following cases:
(1). x, =x,and x, = x,
(i). x, =x;and x,=x,
In case (i) the given equation f = x, becomes

X (0 % (%% %)) * xg) = x,
Now take the set P = {0,1,2,3,4,5,6,7} puta * b=3(a - b) mod 8 V a,b € P. Thenthe
identity

% (0™ (57 %)) * %)) =x,
is satisfied in p. Butx * (y * y) =3x# xV x,y € P. So f=x, does not define a general

Abelian group in case (i). Suppose we have case (ii). So the equation f= X, becomes
X (0% (%% %)) * %) =x,.

Take the system S* where
L x*y)*x=(x*x)*y

S* = 2. x*x=y*y
3(x*x)*(y*x)=x*y

4 x*(x*y)=y
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Then S” is equivalent to the equation
X, * (00 % (5 * %) * x) =%,
But each equation in S” is defined using at most 2 variables which contradicts the theorem

of Mckinsey and Diamond[M-D] mentioned in theorem 3.26. Thus we have the theorem

3.27.

THEOREM 3,28 (Main theorem)
Let fbe a word of length five in (G, *) where (G, *) is as in theorem 3.26. Suppose
that the equation f = x; defines a general Abelian group for some integer 'i'. Then the

equation f = x, has to be one of P-1, P-2,P-3 P-4, Sh, and HN of notation 3.24.

PROOF : -

Let fand f= x_ satisfy hypothesis of theorem. The f cannot be a function of more than
five variables. So f=x. should look like f{x,,X,x,,x,,x;) = x, Furthur f should be one of
G-1 to G-14 of theorem 3.21. We argue case by case. fcannot be G-12 by theorem 3.27.
Now the degree of G-1,G-2,G-3,G-5,G-6, G-9,G-11,and G-13 is not 1.

So f cannot be G-1,G-2,G-3,G-5,G-6,G-9,G-11,0r G-13. Thus we have eliminated f
being any of G-1,G-2,G-3,G-5,G-6,G-9,G-11,G-12, or G-13. So the only possible
candidates for f are G-4,G-7,G-8,G-10, or G-14. We discuss each of these possibilities

one at a time.
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Casel f=G-4.
Then the equation f = x, becomes
& * ) * ((x " 1) ¥ o) =8
In group theoretic terms the above equation becomes
(X, - X,) - X3 + X, + X; = Xm-m-mmmmm- Y
Now Y should be true for all Abelian groups and all variables x,,x,,%,,X,,X;. That is
possible only if x, = x, or x, = x, or x, = X,. Now x cannot be equal to x, or X; by theorem
3.17. Sox,=x, So the equation S should be
(%, * %) * (x5 * x,) * x) = Xmmmmmmmm- S,
Furthur the equation Y can become true for all Abelian groups and all x,,x,,X,,X,%; only in

the following cases : -

Case a:

X, =%, and X, = X;
Now case 'a' cannot be possible by theorem 3.26. So the case 'b'is the only case possible.
Then equation S becomes
(% %) * (% * %) * %) = x,

which is equation P-4 of note 3.24.
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Now we discuss
Case 2 f=G-7.
Then the equation f = %, becomes
(%% 06 ¥ %)) * (%, ¥ %) = Xmmmomoee S
In group theoretic terms S, become
X, =X, T X, = X, + X = Xjmemmmmeee Y
This is possible only if x, = x, or x, =x; or x, = x,. Now the case x; =X, and x; = X; are not
possible by theorem 3.17. So x, =x,. So the equation Y, becomes
X, =X, T X5 - X, F Xy = Xpmmmmes Yy
Now Y, is possible only in the following cases: -
Case a;:
Xx,=x, and X, =%
Caseb,:
X, =%, &and x=X
Now case a, is not possible by theorem 3.26. So the only case possible is b, and the
equation S, becomes
(e % 06 * %)) * (%, * %) =%,

which is nothing but equation P-2 of note 3.24.



41

Now we discuss the case 3
Case3 f=G-8.
Then the equation f = x, becomes
(%, * (0% x5) * %)) * X = Xmmmmmeee S,

in group theoretic terms S, becomes

Y, is possible only if x=x, or x, = x, or x, = x,. Now "x, =x,", is not possible by theorem
3.17. Sox,=x, orx;=x, Suppose thatx =x, ThenY, becomes

X=X +X X, -%X =X,
Then we should have either X, =X, and x, =X, or X, = X, and x, = X, If we have X, = X,

and x, = X, then S, becomes

(x, * ((x, * X;) * X)) * x, = LS S,
S, gives
ST (G ((x,* x;) *x,)) * L R e s S;

Putting x, * x, = u; we see that S, is equivalent to

R (C R R ) b ) [ | S—— Se
By theorem 3.27 we see that S, cannot define a general Abelian group. SO the case X, =X,
and x, = X, is not possible. So we must have X, =X, and X, = X, Then the equation S,

becomes

(%, * ((x, * X;) ¥ x))) * X=X
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This is also not possible by an argument similar to the case above. So x, cannot be equal
t0X,. Sox;=x,. Then Y, becomes

X =% X +X-X=X%,
This is possible only if we have either

A:

X, =X and x,=x,

We cannot have B by theorem 3.26. So we must have X, = X, and x, = x; Then equation
S, becomes |

G (0 * %)) * %) * %, =x,
which is equation P-3 of notation 3.24.
Now we discuss the possibility that f= G-14.
In this case the equation f= X, becomes

A R R R Y)) o T— s,
In group theoretic terms S, becomes

X=X T X - X+ Xy = Xmmmmmeae Y
No Y, can hold only if x, = x, by theorem 3.17. So Y, should be

X=Xy T Xy - X+ Xy = Xymmmeeeee Y



Now Y, can hold only in the following cases: -

-x, and X=X
Now the case C cannot hold by theorem 3.26. So we must have x, = X, and X, =X;. So
the equation S, becomes
X, % (% % (% * (%, ¥ %)) =%
which is equation P-1 of notation 3.24.
So now we come to the last possibility namely f= G-10.
Then the equation f= x, becomes
X% (0%, % %) * (%, * X)) = Xeeeeeeee S,

Again writing S, in group theoretic terms we get

43



44

We discuss case a "X, =X, -

Then S, becomes

This can hold only in the following cases, for all Abelian groups and all variables

x] ’x2)x3,x4,x5.

Case a

X, =x, and x,=x
Case a,

X, =X, and X=X,

Case a, cannot hold by theorem 3.26. So we must have X, =X, and X, = X,. The equation
S, becomes

X0 % %) * (x, % x) =%,
Which is nothing but equation HN of notation 3.24. Now we study case b which is "x; =

n
X,".

Now S, becomes

: i llowing cases: -
Y, can hold for all Abelian groups and all variables X,,X,,X;,X, only in the following

Case b,:
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Case b, cannot hold because of theorem 3.26. So we must have x, = X, and x, = x,. Then
the equation S, becomes

% *l(x *X) *(x,*x)=x,
Which is nothing but equation Sh of notation 3.24. Thus we have proved the theorem

3.28 (main theorem).
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