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ABSTRACT
Eight Schiff bases have been synthesized by conventional and three different eco-friendly methods,
whereby two aromatic carbonyl compounds viz. 2-thiophenecarboxaldehyde and salicylaldehyde
were reacted with S-methyl, S-benzyl, and S-n-octyl-dithiocarbazates and thiosemicarbazide. In
order to evaluate the efficiency of the synthesis methods, the time to complete the reaction and
the yield of the Schiff base synthezised by eco-friendly methods, such as solvent-free grinding,
water as a solvent, and lemon juice as catalyst, were compared with those synthesized by the
conventional method. The chemical structures of all the synthesized Schiff bases, where two of
them are novel and reported for the first time, were fully characterized by a variety of physico-
chemical, analytical, and spectroscopic techniques. The molecular and crystal structures of the
Schiff bases especially those having 2-thiophene moiety were further elucidated by single crystal
X-ray diffraction analyzes.

ARTICLE HISTORY
Received 10 July 2019
Accepted 25 February 2020

KEYWORDS
Eco-friendly synthesis; Schiff
bases; Thiosemicarbazones;
Dithiocarbazates; Crystal
structures

Introduction

The concept of green synthesis and its applications in
various organic syntheses by utilizing solvent-free pro-
cesses is to avoid pollution (1, 2). Ideally, these so-
called eco-friendly processes do not require the use of
harmful solvents and produce minimum wastes, there-
fore minimizing pollution and having less environmental
impact. Some criteria for the ideal synthesis include atom
efficient, simple, 100% yield, easily available materials,
environmentally acceptable, no wasted reagents, one
step, and safe, as it has been described in detail by
Clark (3). Environmentally compassionate synthesis
methods therefore have received considerable attention
and, recently, some solvent-free procedures for the syn-
thesis of Schiff bases have also been developed (4, 5). As
it has been elegantly described by Sheldon, the best
solvent is no solvent and if a solvent (diluent) is needed
then water is preferred (6). The synthesis of Schiff bases
by solvent-free reaction using mechanical grinding or

mechanochemical reaction (7) was first reported by
Fumio Toda et al. (8). By grinding together solid anilines
with solid benzaldehydes without passing through liquid
phases, Toda et al. reported the syntheses of twenty azo-
methines in 100% quantitative yield as hydrates. It was
concluded that the solid–solid condensations were
essentially “waste-free” unlike acid-catalyzed azomethine
syntheses in solution and the ease of these reactions
relied on the crystal packing. However, great interest
has been focused on the use of ball milling techniques
as described by Wang (9) and Tigineh et al. (4).

Schiff bases of S-alkyl/aryl dithiocarbazates and thio-
semicarbazide containing the azomethine group (–CH
= N–) have attracted much attention because of their
diverse biological and pharmacological properties (10–
12). In particular, heterocyclic thiosemicarbazones have
antibacterial, antimalarial, antiviral, and antitumour
activities. Thiosemicarbazones were the first true antiviral
substances synthesized and their potential was only
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realized after a number of random events had taken
place (13). In fact, thiosemicarbazones were the first com-
pounds found to be antiviral active in virus-infected
animal tests (13). Among all the thiosemicarbazones
and dithiocarbazates studied so far, the compound that
has attracted considerable attention as a potent antican-
cer agent is triapine (3-aminopyridine-2-carboxaldehy-
dethiosemicarbazone). It is an experimental drug that
has entered several Phase I and Phase II clinical trials as
an anticancer chemotherapeutic agent (14). It also has
intrinsic fluorescent properties at 360 nm which enable
researchers to monitor the uptake and intracellular distri-
bution of this drug in human cancer cells.

In view of potentially beneficial activities of dithio-
carbazates and thiosemicarbazones, we hereby report
eight Schiff bases (labeled as 1–8, Scheme 1, Table 1)
that have been successfully synthesized from the reac-
tions of 2-thiophenecarboxaldehyde, a heterocyclic
aldehyde (15) and salicylaldehyde, a commonly used
aldehyde in the synthesis of Schiff bases (4, 16), with
S-methyl, S-benzyl, S-n-octyldithiocarbazates and thio-
semicarbazide by the conventional method and eco-
friendly methods, namely (i) the solvent-free grinding
or mechanochemical method, (ii) the use of water as
solvent at room temperature and (iii) the use of
lemon juice (Citrus limonium) as catalyst. We have
been able to synthesize the Schiff bases in moderate
to excellent yields. To the best of our knowledge, this
is the first paper that describes the green syntheses
of the Schiff bases obtained from these types of
amino compounds. We then compared the yield of
respective Schiff bases obtained from each method
with those obtained from their conventional method.
The relatively high yields were obtained by the eco-
friendly methods, and syntheses were much easier
and faster than the conventional method. This

reflects the high atom economy obtained and the
eco-friendly nature of the methods described.

Results and discussion

To date, there are no studies on the green syntheses of
thiosemicarbazones and dithiocarbazates, although
Sachdeva et al. have reported on the syntheses of
some new Schiff bases from the reaction of amino
acids with thiosemicarbazide and the compounds were
found to be active against tested pathogens (17). The
solvent-free mechanochemical synthesis (4, 5, 18),
water as solvent (19), and the use of lemon juice (17,
20) as catalyst have been utilized in the syntheses of
Schiff bases, but these methods are mainly using
primary aromatic amines as the amino compound. The
fact that these methods which use inexpensive and
straightforward preparations lead us to explore their
potential in the synthesis of thiosemicarbazones and
dithiocarbazates in our laboratory. The recrystallized
yield and time taken for complete conversion of eight
Schiff bases that we have synthesized using the eco-
friendly methods are summarized in Table 1 along with
those synthesized by the conventional method. For the
conventional and three green methods, the progress of
the reaction was monitored by TLC every 10–15 min
and the time needed for completion of reaction was
recorded. Details of the synthesis procedures and chemi-
cal characterizations of the products are included in the
experimental section. As shown in Table 1, the amines
used in the reactions are S-alkyl/aryl dithiocarbazates
and thiosemicarbazides.

Taking Schiff base 1, as an example, the conventional
method involved heating at reflux using a suitable
solvent (typically absolute EtOH) until the reaction has
completed, and progress of the reaction was monitored

Scheme 1. Synthesis of dithiocarbazates and thiosemicarbazones.
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by TLC and the crude product obtained was recrystal-
lized to give 74% yield. Heating by conventional
method has been known to be time consuming and
produce toxic wastes (21). As shown in Table 1, the
time of reflux is 180 min. For the mechanochemical or
grinding method, both the aldehyde and the amino
compound are placed in a mortar and were ground. A
paste is typically obtained while grinding, indicating
that the reaction has taken place. The time needed for
complete conversion was much less (25 min) and the
recrystallized yield obtained was 91%. For the reaction

using water as solvent, however, both the aldehyde
and the amino compound were added to water (typically
10 mL) and left to stir at room temperature. The time
needed for complete conversion was 120 min and the
recrystallized yield obtained was 92%. As for the reaction
using lemon juice as catalyst, both the aldehyde and the
amino compound were added into a small conical flask
and lemon juice (0.5–1 mL) was added with stirring at
room temperature. The time needed for complete con-
version was the shortest (20 min) and the recrystallized
yield obtained was 79%.

Table 1. The yields obtained and times taken for complete conversion of Schiff-bases (1–8) using conventional and eco-
friendly methods.

No Schiff Base

ConventionalMethod
Mechanochemical

Methoda Water as Solventa
Lemon juice as

Catalysta

Time
(min)

Yield
(%)b

Time
(min)

Yield
(%)b

Time
(min)

Yield
(%)b

Time
(min)

Yield
(%)b

1 S

H

N
NH S

CH3

S

180 74 25 91 120 92 20 79

2 S

H

N
NH S

S

300 57 20 72 30 95 60 89

3 S

H

N
NH S

C8H17

S

120 46 15 83 30 95 60 93

4
S

H

N
NH NH2

S

180 83 20 80 35 96 60 82

5

OH

H

N
N S

S

H

CH3

45 79 30 77 30 62 30 78

6

OH

H

N
N S

S

H

60 83 20 86 30 72% 60 79

7
H

N

OH

N

H

S

S
C8H17

240 36 15 92 30 90 60 91

8

OH

H

N
N NH2

S

H

150 59 20 79 90 62 45 60

aEco-friendly or green methods.
bRecrystallized yield.
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For the mechanochemical methodology, where the
synthesis was carried out under solvent-free conditions
at room temperature, the Schiff bases were obtained at
shorter reaction time (15–30 min) and generally higher
yields (72–92%) as compared to the conventional
method (36–83%), as shown in Table 1. Similarly to a
typical mechanochemical synthesis, a fast color
change was observed and was related to a dehydration
process (4). The yields listed out in Table 1 are the recrys-
tallized yields obtained after recrystallization of the crude
product that was obtained quantitatively after grinding.

For the use of water as solvent in the synthesis, it was
convenient that the Schiff base products were insoluble in
water and the work-up of the reaction simply requires
gravity filtration to isolate the product. After the crude
product was obtained quantitatively, it was then recrystal-
lized from absolute EtOH to give moderate to excellent
yields (62–96%). There are at least three factors attributing
to the feasibility of the synthesis in water (16), namely,
hydrophobic effect, enhanced hydrogen bonding in the
transition state (22–24), and the high cohesive energy
density of water (25, 26). These factors have been
described in great detail by Rao et al (19). It is also
worth noting that, our observation during the synthesis,
since both aldehydes are liquids, a small scale synthesis
(0.5 mmol of startingmaterials) tends to give a full conver-
sion to the product at a much shorter time (10–15 mins).

For the methodology that uses lemon juice (Citrus
limonium) as catalyst, the Schiff bases were generally
obtained at shorter reaction time (20–60 min) and gener-
ally higher yields (60–93%) as compared to the conven-
tional method. Lemon juice is of the choice for catalyst
because it is environmentally benign and is a green
alternative to acid catalysts used in synthesis (27). The
lemon juice obtained was filtered through a filter paper
and the pH was recorded (pH = 2.3–2.5). The reaction
was done at room temperature with stirring. A small
amount of EtOH was added to ensure smooth stirring.
Work-up was simply done by gravity filtration of the
crude mixture, washing with cold EtOH, and followed
by recrystallization from a suitable solvent. The Schiff
bases synthesized by this method were obtained from
moderate to excellent yields.

Overall, the yields obtained by the green methods are
better or comparable with the yields obtained by con-
ventional method except for Schiff base 5 (see Table 1).

1H NMR (DMSO-d6) Spectra

Compounds containing the thioamide –N–NH–C(=S)
moiety like other thiosemicarbazones and the Schiff
bases derived from S-alkyl/aryldithiocarbazates are
capable of exhibiting thione-thiol tautomerism or as an

equilibrium mixture of both forms. Taking 2-thiophene-
carboxaldehyde Schiff base as an example (Figure 1),
the thione-thiol tautomeric forms are shown for the
four Schiff bases (labeled as 1–4).

In general, the 1H NMR spectra of all the Schiff bases
show a singlet peak between δ 8.25–8.55 attributed to
the azomethine (–CH = N) proton, peaks at δ 6.82–
7.93 ppm attributed to aromatic protons and the least
deshielded singlet peak of –SCH2 or –SCH3 is observed
at δ 2.51–4.50 ppm. These results are similar to literature
values (15, 28). Typically, these compounds in DMSO-d6
could either adopt the E configuration with the –NH
signal in the range of 9–12 ppm or adopt a Z configur-
ation with the –NH signal in the range of 13–15 ppm
(29, 30). Therefore, all the Schiff bases, except the thiose-
micarbazones (4 and 8), exist as the Z isomer in DMSO-d6
as evidenced by their –NH signals which are found
between 13.21–13.38 ppm (31).

The 1H NMR spectra do not show the –SH peak which
is expected at δ 4.00 ppm, but instead, they show a
singlet peak at δ 11.50–13.38 which is attributed to the
secondary N–H atoms and this indicates that the Schiff
bases in solution exist predominantly in thione form
(32). Lastly, for the Schiff bases with the salicyl moiety,
the –OH proton signal is observed at δ 9.95–10.50 ppm
as expected (19, 33). For the two thiosemicarbazones, 4
and 8, the two broad peaks appeared at δ 7.55 and
8.22 ppm, and 7.95 and 8.16, respectively, are attributed
to the –NH2 protons (34).

13C NMR (DMSO-d6) Spectra

The 13C NMR spectra of all the Schiff bases show the
signals assigned to the thione carbon (C = S) at 198.05–
177.97 ppm, imine carbons (C = N) at 145.02–
139.07 ppm, the signals assigned to the aromatic
carbons at 116.47–138.39 ppm and the least deshielded
signal assigned to the carbon of –SCH2 or –SCH3 at
17.20–38.01 ppm (28). Lastly, for the Schiff bases with
the salicyl moiety, the signals at 157.70–156.85 ppm

Figure 1. The thione and thiol forms of 1–4.
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are attributable to the hydroxyl carbon (C–OH) which is
in agreement with literature values (35).

Mass Spectra

The EI mass spectra shows molecular ion peaks at m/z
[M]+● that corresponds well to the proposed structures
of all the Schiff bases (36). However, the molecular ion
peaks for 2 and 3 are not found which is possibly due
to all the molecular ions breaking into fragments.

FTIR

In general, the IR spectra of all the Schiff bases display a
strong band observed at around 1578–1618 cm−1 which
is assigned to the azomethine ʋ(C = N). It is evident from
the IR data that all the synthesized Schiff bases from S-
alkyl/aryldithiocarbazate and thiosemicarbazide in the
solid state display the secondary ʋ(N–H) band at 3094–
3132 cm−1 but do not show ʋ(S–H) band at 2600 cm−1

indicating that in the solid state they remain as the
thione tautomer (32). In addition, the thiosemicarbazones
display stretching vibrations at 3171–3231 and 3310–
3410 cm−1 which are assigned as the asymmetric ʋ(N–H)
and symmetric ʋ(N–H) of the NH2 group, respectively (29).

X-ray Crystal studies

Besides carrying out a number of physico-chemical tech-
niques including FTIR, NMR, and mass spectroscopy, as

previously described, we were able to grow single crys-
tals for 1, 3 and 4. These compounds could therefore
be conclusively be characterized. A summary of crystallo-
graphic data for Schiff bases 1, 3 and 4 are summarized
in Table 2.

Figures 2–4 show themolecular structures of 1, 3 and 4,
respectively, with the atomic numbering and their inter-
molecular interactions in the crystal structure. Their 2-thio-
phenecarboxyl-thiocarbazate moiety are almost planar
and the Schiff bases generally adopt the E conformation
about the imine bond. Like most of thiosemicarbazones
and Schiff bases from S-alkyl/aryl dithiocarbazates, the C
= S and C =N bond lengths also indicate that, in the
solid state, it remains in the thione form. Their bond
lengths for azomethine are in the range of 1.282(3) to
1.290(3) Å that are similar to a typical C = N bond (1.268
(4) to 1.282(2) Å) of related compounds (37, 38).

Schiff base 1 is nearly planar (Figure 2a) and mol-
ecules are interconnected by intermolecular C—H… S
and N—H … S hydrogen bonds into molecular
ribbons which are stacked on top of each other in the
three dimensional structure (Figure 2b).

For Schiff base 3, it undergoes conformational disorder
in the crystal lattice, where the thiophenemoiety is rotated
by 180°, in such a way themolecules may adopt E and anti-
E conformation with 50% probability (Figure 3a). Two mol-
ecules of 3 from adjacent asymmetric units are intercon-
nected into head-to-head dimers by intermolecular C—
H … S and N—H … S hydrogen bonds involving the
thiocarbazate moiety. The dimers are further connected

Table 2. Crystallographic data and refinement data of Schiff bases 1, 3 and 4.
1 3 4

Empirical formula C7H8N2S3 C14H22N2S3 C6H7N3S2
Formula weight 216.33 314.51 185.27
Temperature/K 223(2) 100(2) 100(2)
Crystal system triclinic triclinic monoclinic
Space group P-1 P-1 P21/n
a/Å 6.068(5) 4.4599(2) 13.4386(6)
b/Å 9.058(7) 12.3610(4) 5.7674(3)
c/Å 9.762(7) 15.8193(6) 21.2745(9)
α/° 68.70(2) 105.901(1) 90
β/° 81.48(3) 96.060(1) 96.280(1)
γ/° 79.72(3) 97.572(1) 90
Volume/Å3 489.8(7) 822.18(6) 1639.0(1)
Z 2 2 8
ρcalcg/cm

3 1.4667 1.270 1.502
μ/mm−1 0.703 4.021 5.371
F(000) 224.8 336 768
Crystal size/mm3 0.62 × 0.56 × 0.52 0.262 × 0.240 × 0.219 0.297 × 0.285 × 0.190
2Θ range for data collection/° 4.5–55.06 3.772–70.069 3.715–74.242
Index ranges −7≤ h≤ 7, −11≤ k≤ 11,

−12≤ l≤ 12
−5≤ h≤ 5, −15≤ k≤ 15,

−19≤ l≤ 19
−16≤ h≤ 16, −5≤ k≤ 7,

−26≤ l≤ 26
Reflections collected 4832 17095 13345
Independent reflections 2107 [Rint = 0.0210] 3123 [Rint = 0.0298] 3232 [Rint = 0.0305]
Data/restraints/parameters 2107/0/140 3123/185/223 3232/0/224
Goodness-of-fit on F2 1.088 1.086 1.105
Final R indexes [I≥ 2σ (I)] R1 = 0.0289, wR2 = 0.0710 R1 = 0.0265, wR2 = 0.0668 R1 = 0.0357, wR2 = 0.1126
Final R indexes [all data] R1 = 0.0330, wR2 = 0.0740 R1 = 0.0287, wR2 = 0.0717 R1 = 0.0376, wR2 = 0.1143
Largest diff. peak/hole/e Å−3 0.26/−0.24 0.258/−0.309 0.410/−0.487
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by other C—H … S bonding interactions into molecular
ribbons lying on the bc-plane. The dimers are stacked on
top of each other along the a-axis (Figure 3b).

For Schiff base 4, there are two molecules with the
same conformation in the asymmetric unit similarly to
the one reported by Hong et al. (15). The two molecules
in an asymmetric unit are interconnected by an intermo-
lecular N—H … S hydrogen bond. They are further con-
nected by intermolecular N—H … S hydrogen bond
into three dimensional structure (Figure 4).

Conclusions

In summary, we have successfully synthesized eight
Schiff bases from the reactions of 2-thiophenecarboxal-
dehyde and salicylaldehyde with S-methyl, S-benzyl
and S-n-octyl-dithiocarbazates and thiosemicarbazide
by both the conventional and three green synthesis
methods including solvent-free grinding, water as
solvent, and lemon juice as catalyst. The time required
to complete the reaction and the yield of Schiff bases
obtained by the different eco-friendly methods were
compared with those of the conventional method. Our
findings suggest that the water-based synthesis is most
suitable for the Schiff base from thiophene-2-carboxalde-
hyde, whereas the grinding is best suited for the Schiff
base from salicylaldehyde. Overall, the eco-friendly
water-based and solvent-free grinding methods would

be a useful alternative green synthesis to the conven-
tional method of any related Schiff bases in general.

Experimental

General

All the chemicals and solvents were of analytical reagent
grade and used without any further purification. They
were purchased from either Sigma-Aldrich, Merck or
Fluka. The melting points of the compounds were deter-
mined by amelting point apparatus SMPI Stuart Scientific.
TLC was performed using plastic plates with percoated
silica, Whatman Partisil K6 60 TLC Plates fluorescent. The
IR spectra were recorded using ATR in the frequency
range of 4000–500 cm−1 on a Shimadzu IR Prestige-21
Spectrometer. EI mass spectra were determined using
an Agilent Mass spectrometer 5975C MSD (with direct
probe). All of the experiments were carried out at the
Faculty of Science, UBD. Melting point, IR and EI/MS
were conducted at UBD. 1H and 13C NMR analysis and X-
ray crystal diffraction were carried out at Tennessee
State University, USA.Microanalyses for carbon, hydrogen
and nitrogen (C, H, and N) were recorded on a Thermo
Scientific CHNS Analyzer. Most of the X-ray data were col-
lectedusing a Bruker AXSD8VENTURE Single Crystal X-ray
Diffractometer at the X-ray Diffraction Laboratory, Depart-
ment of Chemistry, National University of Singapore

Figure 2. (a) A view of the molecular structure of 1, (b) molecules of 1 are interconnected by intermolecular C—H … S and N—H …
S hydrogen bonds into molecular ribbons.
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(NUS). All IR and NMR spectra are included in the Sup-
plementary Information.

General experimental procedures for Schiff
Bases 1–8

Conventional method
In a typical reaction, a solution of the aldehyde (ranging
from 4.5–9.0 mmol, 1 eq) in EtOH was added to an equi-
molar amount of amine in EtOH and heated under reflux
for the respective time. The reaction mixture was left at
room temperature overnight. The product obtained
was filtered and washed with cold absolute EtOH and
recrystallized from EtOH.

Solvent-free mechanochemical method
In a typical reaction, the aldehyde (ranging from 4.5–
9.0 mmol, 1 eq) was added to an equimolar amount of
the amino compound in a mortar and a color change
was observed immediately. The mixture was then
ground together at room temperature for the respective
time needed (15–30 min). The progress of the reaction
was monitored by TLC every 15–20 min. After com-
pletion, the powdered product was left in the mortar
overnight, covered with watch glass and placed in a
dark room. The product was collected by filtration,
then washed with cold EtOH and recrystallized from
absolute EtOH.

Figure 3. (a) A view of the molecular structure of 3, (b) two molecules of 3 from adjacent asymmetric units are interconnected into
head-to-head dimers by intermolecular C—H … S and N—H … S hydrogen bonds involving the thiocarbazate moiety. The dimers
are further connected by other C—H … S bonding interactions into molecular ribbons lying on the bc-plane.
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Water as solvent and stirring at room temperature
For a small scale synthesis, 0.5 mmoL of starting materials
was used whilst 5 mmoL scale of starting materials was
used for a large scale synthesis. The amino compound
that is not soluble in water was suspended in distilled
water (10 mL) followed by the addition of the aldehyde
to it at room temperature. However, if the amino com-
pound is soluble in water, it is essential to add the

exact amount of water that is able to dissolve it comple-
tely. During the course of the reaction, some of the sus-
pension turned yellow. The resulting mixture was then
stirred at room temperature (ranging from 30 to
120 min) with monitoring by TLC every 15 min. The sus-
pension turned pale yellow while still remaining undis-
solved from water and was left to stand overnight in a
dark room to allow the solvent to dry out. The pale

Figure 4. (a) A view of the molecular structure of 4 with two molecules with the same conformation in the asymmetric unit, (b) the two
molecules of 4 in an asymmetric unit are interconnected by an intermolecular N—H … S hydrogen bond to form a three dimensional
structure.
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yellow crude product obtained was collected by
filtration, then washed with cold EtOH, and recrystallized
from absolute EtOH.

Lemon juice as catalyst (20, 39)
Firstly, fresh lemon fruit was cut and the pieces were
squeezed manually to extract the juice. The juice
obtained was then filtered through filter paper to
remove the solid material and to get clearer juice
which was used as a catalyst for the reaction. In a
typical reaction, 1 mL lemon juice (pH 2.3–2.5) was
added to a mixture of the amino compound (ranging
from 4.5–9.0 mmol, 1 eq) and an equimolar amount of
aldehyde. 1 mL absolute EtOH solvent was added to
ensure smooth stirring. The mixture was stirred at
room temperature (ranging from 20 to 60 min) with
monitoring by TLC every 15 min. A color change is
observed and the mixture was left to stand overnight
in a dark room to allow the solvent to dry out. A pale
yellow crude product was collected by filtration, then
washed with cold EtOH and recrystallized from absolute
EtOH.

Schiff bases 1–8 were prepared according to the
above procedures and the analyses of Schiff bases 1, 2,
4, 5, 6 and 8 were consistent with literature values.

[Methyl (2E)-2-[(thiophen-2-yl)methylidene]hydra-
zine-1-carbodithioate] (40), (1). Yellow crystals; mp 184–
186°C; Anal. Calc for C7H8N2S3: C 38.86, H, 3.73, N,
12.95%. Found: C 39.02, H 3.96, N 12.80%; 1H NMR
(DMSO-d6), δH: 13.29 (s, 1H, −NH), 8.40 (s, 1H, −CH =
N), 7.69 (d, 1H), 7.15 (t, 1H), 7.51 (d, 1H) (thiophene-3H),
2.51 (s, 3H, −SCH3);

13C NMR (DMSO-d6), δC: 198.05
(−C = S), 141.97 (−CH = N), 138.22, 133.15, 130.52,
128.83 (heterocyclic carbons), 17.20 (-SCH3); IR (ʋmax,
cm−1): 3098 ʋ(N–H), 1593 ʋ(C = N), 1028 ʋ(N–N), 927 ʋ
(C = S); EI-MS Calc. for C7H8N2S3 [M]+●: 216.33, Found:
216.

[Benzyl (2E)-2-[(thiophen-2-yl)methylidene]hydrazine-
1-carbodithioate] (40), (2). Yellow crystals; mp 188–190°
C; Anal. Calc for C13H12N2S3: C 53.39, H 4.14, N 9.58%.
Found: C 53.34, H 4.03, N 9.69%; 1H NMR (DMSO-d6)
δH: 13.35 (s, 1H, −NH), 8.40 (s, 1H, −CH = N), 7.68 (d,
1H), 7.14 (t, 1H), 7.51 (d, 1H) (thiophene-3H), 7.39 (d,
2H), 7.35 (t, 2H), 7.26 (t, 1H) (Ar-H), 4.46 (s, 2H, −SCH2);
13C NMR (DMSO-d6) δC: 196.10 (−C = S), 142.28 (−CH =
N), 138.08, 137.25, 130.65, 127.77 (heterocyclic carbon),
133.33, 129.64, 129.01, 128.85 (aromatic carbon), 37.90
(-SCH2); IR (ʋmax, cm−1): 3103 ʋ(N–H), 1588 ʋ(C = N),
1031 ʋ(N–N), 923 ʋ(C = S).

[Octyl (2E)-2-[(thiophen-2-yl)methylidene]hydrazine-
1-carbodithioate], (3). Pale yellow crystals; mp 82–84°C;
Anal. Calc for C14H22N2S3: C 53.46, H, 7.05, N, 8.91%.
Found: C 53.32, H 6.88, N 8.62%; 1H NMR (DMSO-d6),

δH: 13.21 (s, 1H, −NH), 8.40 (s, 1H, −CH = N), 7.73 (d,
1H), 7.16 (t, 1H), 7.55 (d, 1H) (thiophene-3H), 3.17 (t, 2H,
−SCH2), 1.65 (quint, 2H), 1.38 (m, 2H), 1.28 (m, 8H)
(−CH2), 0.87 (t, 3H, −CH3);

13C NMR (DMSO-d6), δC:
197.00 (−C = S), 141.90 (−CH = N), 138.39, 133.06,
130.51, 128.74 (heterocyclic carbons), 33.47 (-SCH2),
31.71, 29.05, 28.92, 28.89, 22.56 (−CH2), 14.44 (−CH3); IR
(ʋmax, cm

−1): 3094 ʋ(N–H), 1590 ʋ(C = N), 1029 ʋ(N–N),
918 ʋ(C = S).

[(2E)-2-[(Thiophen-2-yl)methylidene]hydrazine-1-car-
bothioamide] (15, 41), (4). Pale yellow crystals; mp 209–
211°C; Anal. Calc for C6H7N3S2: C 38.90, H 3.81, N
22.68%. Found: C 39.11, H 3.81, N 22.84%; 1H NMR
(DMSO-d6), δH: 11.50 (s, 1H, −NH), 8.25 (s, 1H, −CH =
N), 7.55 & 8.22 2x(br, 1H, −NH2), 7.65 (d, 1H), 7.45 (d,
1H), 7.12 (t, 1H) (thiophene-3H); 13C NMR (DMSO-d6),
δC: 177.97 (−C = S), 139.07 (−CH = N), 138.07, 131.07,
129.34, 128.40 (heterocyclic carbons); IR (ʋmax, cm

−1):
3410, 3231, 3132 ʋ(N–H), 1578 ʋ(C = N), 1099 ʋ(N–N),
939 ʋ(C = S); EI-MS Calc. for C6H7N3S2 [M]+●: 185.26,
Found: 185.

[Methyl (2E)-2-[(2-hydroxyphenyl)methylidene]hydra-
zine-1-carbodithioate] (42), (5). Yellow solids; mp 194–
196°C; Anal. Calc for C9H10N2OS2: C 47.77, H 4.45, N
12.38%. Found: C 47.96, H 4.39, N 12.41%; 1H NMR
(DMSO-d6), δH: 13.35 (s, 1H, −NH), 10.30 (s, 1H, −OH),
8.55 (s, 1H, −CH = N), 7.68 (d, 1H), 7.30 (t, 1H), 6.92 (d,
1H), 6.90 (t, 1H) (Ar-H), 2.51 (s, 3H, −SCH3);

13C NMR
(DMSO-d6) δC: 197.73 (−C = S), 157.69 (phenolic
carbon), 144.98 (−CH = N), 133.72, 127.69, 120.09,
119.55, 116.86 (aromatic carbons), 17.23 (-SCH3); IR
(ʋmax, cm

−1): 3467 ʋ(O–H), 3103 ʋ(N–H), 1603 ʋ(C = N),
1042 ʋ(N–N), 962 ʋ(C = S); EI-MS Calc. for C9H10N2OS2
[M]+●: 226.31, Found: 226.

[Benzyl (2E)-2-[(2-hydroxyphenyl)methylidene]hydra-
zine-1-carbodithioate] (43, 44), (6). Pale yellow solids;
mp 183–185°C; Anal. Calc for C15H14N2OS2: C 59.58, H
4.67, N 9.26%. Found: C 59.35, H 4.28, N 9.15%; 1H NMR
(DMSO-d6), δH: 13.38 (s, 1H, −NH), 10.23 (s, 1H, −OH),
8.53 (s, 1H, −CH = N), 7.65 (d, 1H), 7.26 (m, 1H), 7.28 (m,
1H), 6.93 (d, 1H), 7.45 (d, 2H), 7.35 (t, 2H), 6.85 (t, 1H)
(Ar-H), 4.50 (s, 2H, −SCH2);

13C NMR (DMSO-d6), δC:
195.93 (−C = S), 157.70 (phenolic carbon), 145.02 (CH =
N), 137.23, 132.76, 129.72, 128.98, 127.73, 127.49,
120.08, 119.56, 116.83 (aromatic carbons), 38.01
(-SCH2); IR (ʋmax, cm−1): 3375 ʋ(O–H), 3100 ʋ(N–H),
1605 ʋ(C = N), 1042 ʋ(N–N), 951 ʋ(C = S); EI-MS Calc. for
C15H14N2OS2 [M]+●: 302.41, Found: 302.

[Octyl (2E)-2-[(2-hydroxyphenyl)methylidene]hydra-
zine-1-carbodithioate], (7). Yellowish-white solid; mp
82–83°C; Anal. Calc for C16H24N2OS2: C 59.22, H 7.45, N
8.63%. Found: C 59.45, H 7.24, N 8.59%; 1H NMR
(DMSO-d6) δH: 13.28 (s, 1H, −NH), 10.50 (s, 1H, −OH),
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8.50 (s, 1H, −CH = N), 7.60 (d, 1H), 7.33 (t, 1H), 6.93 (d, 1H),
6.92 (t, 1H) (Ar-H), 3.20 (t, 2H, −SCH2), 1.65 (quint, 2H),
1.40 (m, 8H), 1.35 (m, 2H) (−CH2), 0.80 (t, 3H, −CH3);

13C
NMR (DMSO-d6) δC: 196.82 (−C = S), 157.51 (phenolic
carbon), 144.70 (−CH = N), 132.92, 127.80, 120.37,
119.30, 116.87 (aromatic carbons), 33.54 (-SCH2), 31.53,
28.82, 28.68, 28.56, 22.44 (−CH2), 14.34 (−CH3); IR (ʋmax,
cm−1): 3229 ʋ(O–H), 3109 ʋ(N–H), 1618 ʋ(C = N), 1024 ʋ
(N–N), 947 ʋ(C = S); EI-MS Calc. for C16H24N2OS2 [M]+●:
324.50, Found: 324.

[(2E)-2-[(2-Hydroxyphenyl)methylidene]hydrazine-1-
carbothioamide] (45), (8). Brown solids; mp 247–249°C;
Anal. Calc for C8H9N3OS: C 49.22, H 4.65, N 21.52%.
Found: C 48.96, H 4.55, N 21.34%; 1H NMR (DMSO-d6),
δH: 11.50 (s, 1H, −NH), 9.95 (s, 1H, −OH), 8.50 (s, 1H,
−CH = N), 8.16 & 7.95 2x(s, 1H, −NH2), 7.93 (m, 1H), 7.23
(t, 1H), 6.82 (t, 1H), 6.85 (d, 1H) (Ar-H); 13C NMR (DMSO-
d6), δC: 178.07 (−C = S), 156.85 (phenolic carbon),
140.01 (−CH = N), 131.55, 127.18, 120.80, 119.72, 116.47
(aromatic carbons); IR (ʋmax, cm

−1): 3422 ʋ(O–H), 3310,
3171, 3130 ʋ(N–H), 1599 ʋ(C = N), 1063 ʋ(N–N), 947 ʋ(C
= S); EI-MS Calc. for C8H9N3OS [M]+●: 195.24, Found: 195.

Single Crystal X-ray structure analysis

X-ray crystallographic data for Schiff base 1was collected
by selecting a suitable crystal and was attached to a
MiTeGen loop with Apiezon grease on a Rigaku Mer-
cury375R (2 × 2 bin mode) diffractometer. The crystal
was kept at 223 K during data collection. Using Olex2
(46), the structure was solved with the SIR2004 (47) struc-
ture solution program using Direct Methods and refined
with the olex2.refine (48) refinement package using
Gauss-Newton minimization.

X-ray crystallographic data for Schiff bases 3 and 4
were collected with on a Bruker AXS D8 Venture using a
Mo-Kα monochromatized (λ = 0.71073 Å) X-ray radiation.
Frames were integrated with SAINT software package
(49) and data were corrected for absorption effects
using the multi-scan method implanted in the SADABS
software (50). The structures were solved by direct
methods (51) and subsequently completed by Fourier
recycling and refined by the full-matrix least squares
refinements based on F2 using SHELXL (52) included in
WinGx system programs for Windows (53). All non-hydro-
gen atoms were refined anisotropically. The hydrogen
atoms were allowed to ride their parent atoms with
ideal geometries. All the hydrogen atoms were introduced
as fixed contributors for the final cycle of least-squares
refinement and they were refined isotropically.

Their selected bond lengths and bond angles are
within the expected range and normal values (Tables
S1, S2 and S3). Crystallographic data (excluding structure

factors) for compounds 1, 3 and 4 have been deposited
with the Cambridge Crystallographic Data Centre as sup-
plementary publication nos. CCDC. 1893124, 1893125
and 1893127 respectively. Copies of the data can be
obtained, free of charge, on application to CCDC, 12
Union Road, Cambridge CB2 1EZ, UK, (fax: +44-(0)1223-
336033 or e-mail:deposit@ccdc.cam.ac.Uk).
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