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The emergence of top-down, sensory prediction during learning 
in infancy: A comparison of full-term and preterm infants
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1Department of Psychology, Princeton University, Princeton, New Jersey

2Department of Psychology, Tennessee State University, Nashville, Tennessee

Abstract

Prematurity alters developmental trajectories in preterm infants even in the absence of medical 

complications. Here, we use fNIRS and learning tasks to probe the nature of the developmental 

differences between preterm and full-term born infants. Our recent work has found that 

prematurity disrupts the ability to engage in top-down sensory prediction after learning. We now 

examine the neural changes during the learning that precede prediction. In full-terms, we found 

modulation of all cortical regions examined during learning (temporal, frontal, and occipital). By 

contrast, preterm infants had no evidence of neural changes in the occipital lobe selectively. This is 

striking as the learning task leads to the emergence of visual prediction. Moreover, the shape of 

individual infants’ occipital lobe trajectories (regardless of prematurity) predicts subsequent visual 

prediction abilities. These results suggest that modulation of sensory cortices during learning is 

closely related to the emergence of top-down signals and further indicates that developmental 

differences in premature infants may be associated with deficits in top-down processing.
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1 | INTRODUCTION

Prematurity, or birth before 37 weeks of a 40 week gestation, is emerging as one of the 

leading causes of neuro-developmental impairment. Advances in medical care have been 

increasing survival rates of infants born preterm, but the infants who survive exhibit a high 

rate of cognitive and behavioral problems. Globally, there are 15 million preterm births per 

year and rising (World Health Organization, 2014) with 400,000 preterm births in the United 

States alone, a rate of almost one in 10 (March of Dimes). Numerous studies have 

demonstrated that prematurity is associated with poor developmental outcomes: on average, 

preterm infants have significantly reduced IQ (Martinussen et al., 2009) and higher rates of 

learning disabilities (Morse, Zheng, Tang, & Roth, 2009; Orchinik et al., 2011), language 
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delays (Gayraud & Kern, 2007; van Noort-van der Spek, Franken, & Weisglas-Kuperus, 

2012),1 and autism (Kuzniewicz et al., 2014; Wong, Huertas-Ceballos, Cowan, & Modi, 

2014). With the large number of infants born preterm in the United States and abroad, 

prematurity constitutes a major public health risk.

While, historically, it was assumed that the poor developmental outcomes for preterm infants 

arose from medical complications,2 even preterm infants without severe medical 

complications are at-risk. For example, late preterm infants (born 34–36 weeks gestation), 

who typically do not have severe medical complications, are at-risk for poor developmental 

outcomes (e.g., Kuzniewicz et al., 2014; Morse et al., 2009; van Noort-van der Spek et al., 

2012). Moreover, studies that restrict their preterm population to those without serious 

medical complications continue to see differences between preterm and full-term infants 

both behaviorally and neurally (e.g., Mewes et al., 2006; Rose, Jankowski, Feldman, & Van 

Rossem, 2005; Smyser et al., 2010). Overall, these studies have revealed “effects of 

prematurity in the absence of detected brain injury” (Hüppi et al., 1996). Thus, the emerging 

view is that the risk for preterm infants is a combination of injury arising from medical 

complications as well as disturbances in their maturation or development resulting from 

having been born before their due date (Buser et al., 2012; Dudink, Kerr, Paterson, & 

Counsell, 2008; Ment, Hirtz, & Hüppi, 2009; Mento & Bisiacchi, 2012; Volpe, 2009). While 

it is clear that infants born preterm can exhibit disruptions to their development, the nature 

of this disruption is unknown.

Advances in neuroimaging technology have provided the means to delve deeper into the 

investigation of this developmental disruption by allowing exploration of the neural 

development of those born preterm (Mento & Bisiacchi, 2012; Miller & Ferriero, 2009). 

These studies have by and large revealed that those born preterm exhibit altered neural 

developmental trajectories and differing brain-behavior relationships. It has been established 

that effects of prematurity alter both the structure (Abernethy, Cooke, & Foulder-Hughes, 

2004; Martinussen et al., 2009) and the function (Barde, Yeatman, Lee, Glover, & Feldman, 

2012; Mullen et al., 2011; Schafer et al., 2009) of the brain and persist into adolescence. 

While these differences predict deficits in behavior, the neural differences between those 

born preterm or full-term are present even when participants have IQs and cognitive abilities 

in the normal range. Notably, Schafer et al. (2009) and Mullen et al. (2011) report altered 

connectivity, functional and structural respectively, in the brains of those born premature. 

These studies suggest that those who are born preterm traverse alternative developmental 

trajectories which likely result in higher risk for poor developmental outcomes.3 Looking 

much earlier in development, studies on connectivity of infants born preterm have found 

In an interesting contrast to the large body of literature demonstrating language delays in preterm infants, work by Pena and colleagues 
has found that preterm infants have the same early developmental trajectories for speech perceptual as full-term infants. However, this 
work is intended to explore the question of whether maturational factors or experience support the development of speech perception 
as preterm infants have more extrauterine experience and not whether preterm infants have disrupted development. Similarly, in the 
field of visual development, Dobkins, Bosworth, and McCleery (2009) have found that across different aspects of visual development 
preterm infants either exhibit similar or sped up developmental trajectories (Bosworth & Dobkins, 2009)
Preterm infants often experience serious medical complications such as intraventricular hemorrage (IVH) and periventricular 
leukomalacia (PVL), which can cause permanent damage to white matter tracts in the brain, and retinopathy of prematurity (ROP), 
which can result in severe sensory deficits.
Due to the remarkable changes in neonatal medical care and outcome rates, Baron and Rey-Casserly (2010) caution that studies of 
preterm infants born from prior generations are less likely to accurately predict the outcome for preterm infants born today. However, 
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reductions in functional connectivity at 40 weeks or term age (Smyser et al., 2010). In other 

words, by the week that preterm infants should have been born, their brains already differ 

from infants who remained in utero. Numerous studies have found abnormalities in white 

and grey matter in preterm infants and have associated these differences with poor 

developmental outcomes years later (Ball et al., 2012; Beauchamp et al., 2008; Hüppi et al., 

1996; Ment et al., 2009; Mewes et al., 2006). Importantly, these studies were restricted to 

infants without medical complications already associated with poor developmental outcomes 

and thus isolate the developmental disruptions preterm infants experience independent of 

brain injury.

Further highlighting potential differences in brain development are findings from Emberson, 

Boldin, Riccio, Guillet, and Aslin (2017) comparing top-down predictions in infants born 

full-term versus prematurely. In work examining neural response to violations of learned 

top-down predictions, they found that premature birth impaired infants’ ability to generate 

top-down predictions but, in a separate behavioral control, prematurity was not found to 

affect the formation of audiovisual association or the detection of test trials. This indicates a 

relatively selective impairment of top-down processing associated with learning and 

suggests that top-down processing plays an important role in development.

While previous work has suggested a potential link between top-down predictive ability and 

altered brain development observed in preterm infants, what, among infants in general, is the 

exact role and importance of top-down processing to learning? In fact, learning, the process 

by which experience changes internal representations, has often been thought of as a bottom-

up weighting or encoding process, especially early in development. Specifically, this view 

proposes that increases in weight are given to the internal representations that have been 

experienced more frequently. In other words, these stimuli are better encoded through 

repeated exposure. After exposure, new sensory input that matches frequently encountered 

input is more easily processed, and sensory inputthatdoes not match these frequent 

experiences triggers a novelty preference.

However, a number of seminal findings from the field of cognitive neuroscience have 

suggested that the brain can also adjust to experience using top-down or feedback 

connections. In the theory of predictive coding, for example, perceptual cortices are an 

interplay of bottom-up or feed-forward sensory signals and top-down or feedback signals 

which convey the current expectations or predictions about the upcoming sensory input, and 

it is the match or mismatch of these responses that drives the cortical activity that we 

observe in neuroimaging experiments (Clark, 2013; Friston, 2005). Specifically, the better 

the prediction or expectation matches the sensory input, the less cortical activity will be 

observed in sensory input. The larger the mismatch between expectation and sensory input, 

the larger the cortical response. In this way, the brain is able to adapt to the structure or 

statistics in the environment in a top-down fashion through the feeding back of expectations.

we include these studies as they focus on those born preterm without major medical complications and who have IQ in the normal 
range. While cautious interpretation is needed, we believe these studies reveal something about the developmental differences 
associated with prematurity and not the medical complications that were more prevalent in earlier cohorts of preterm infants.
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While learning has largely been considered as bottom-up in infancy, recent work has 

suggested that young infants are engaging in top-down modulation during learning as well. 

This work suggests that learning can indeed involve the interplay of top-down and bottom-

up processes starting very early in life. Kouider et al. (2015) found evidence that a recently 

learned audiovisual association changes early stages of perception processing by 12-months. 

This is evidenced through changes in the ERP with augmentation of the early perceptual 

component when the visual event is consistent with the auditory cue. These components 

occur so soon after stimulus presentation that these changes in perceptual processing must 

arise from expectations or top-down predictions of that particular visual stimulus following 

the auditory cue. In a study that was later repeated with preterm infants (discussed briefly 

above), Emberson, Richards, and Aslin (2015) found that, after a short period of 

familiarization with a novel audiovisual association, 6-month-old infants were able to 

generate top-down predictions of their sensory input. These predictions are evidenced by 

activation of the visual system during the unexpected absence of the visual stimulus after the 

predictive auditory cue. Importantly, a separate control group confirms that learning the 

audiovisual association is necessary for activation of the visual system. This control group 

data suggests that these types of predictions are distinct from violations of expectation but, 

in general, the overlap of top-down predictions, as recorded neurally, and violations of 

expectation remains an important topic of future work. These findings suggest that learning 

produces top-down differences in processing starting early in infancy and after very little 

exposure. However, it is unknown when these top-down predictions come online during the 

learning process and whether the emergence of these top-down predictions are part of the 

neural changes seen over the time-course of learning.

Building from these existence proofs that young infants can generate top-down predictions, 

the central question for this paper is do these top-down predictions or processes shape 

learning in the developing brain? In the learning sciences, prediction has long been believed 

to be integral to learning (e.g., prediction errors support reinforcement learning, McClure, 

Berns, & Montague, 2003; Rescorla & Wagner, 1972), and, in developmental science, there 

is a increasing focus on top-down prediction as a key part of the “engine of change” in 

cognitive development (McClelland, 2002). However, despite both behavioral and neural 

findings that infants can generate prediction, there is no direct evidence that prediction 

supports learning early in development. Here, we tackle this question of whether predictions 

are shaping learning by examining the relationship between the emergence of top-down 

predictions and neural, learning trajectories.

Recent findings in the field of developmental cognitive neuroscience have started to 

characterize the neural signatures of learning and memory in young infants and move away 

from looking at outcome measures (e.g., novelty responses). While a number of studies have 

documented novelty responses after learning (i.e., increases for novel or unfamiliar stimuli 

after familiarization, e.g., Benavides-Varela et al., 2011; Gervain, Macagno, Cogoi, Pena, & 

Mehler, 2008; Nakano, Watanabe, Homae, & Taga, 2009), it is difficult to use offline novelty 

responses to gain direct information about the processes that support learning online 

(Karuza, Emberson, & Aslin, 2014). Specifically, while outcome measures or offline 

responses are clearly related to learning, they emerge after learning takes place, by definition 

and likely involve a large number of other cognitive processes such as memory retrieval. For 
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these reasons, looking at outcome measures reveals more about what is learned and are more 

limited in revealing how learning takes place to begin with. Instead, focus on neural changes 

during learning, or neural learning trajectories, is needed to learn about online processes 

supporting learning.

Broadly, examinations of learning trajectories in infants have suggested that neural 

responses in the infant brain follow the foundational Hunter and Ames (1988) model of 

infant looking times during habituation. Hunter and Ames proposed that, at early stages of 

learning, infants exhibit familiarity preferences and then, as learning or encoding proceeds, 

infants exhibit novelty preferences. An implication of this model is that with greater 

difficulty of learning, infants will tend toward familiarity preferences and, with greater ease 

of learning, infants will tend towards novelty preferences. Translating looking preferences to 

patterns of neural activation, the model would propose greater neural activation for familiar 

sequences early in learning and then an attenuation of this response with an increased 

response to novelty as learning increases. At large, findings of neural changes during 

learning support this view. While a number of studies have found no changes in the 

magnitude of neural activation during learning (e.g., Benavides-Varela et al., 2011), Nakano 

et al. (2009) found decreases in neural activation (i.e., repetition suppression) with repeated 

exposure to a single, auditory stimulus followed by a novelty response at test. There is also 

evidence that the degree of learning difficulty affects the direction of neural change: Gervain 

et al. (2008) examined auditory rule learning in neonates with two levels of difficulty, very 

difficult and extremely difficult, and examined neural responses over exposure. They found 

evidence of repetition enhancement for the very difficult rule and no change in activation 

during the extremely difficult rule in the temporal-frontal regions of the infant brain. 

Following this work, Bouchon, Nazzi, and Gervain (2015) examined more simple versions 

of these rules and found repetition suppression for one of the rules (now the more difficult of 

the two) and no change for the other. While these studies do not quantify the difficulty of 

learning these rules for neonates, the findings do broadly suggest that, with greater difficulty, 

infants exhibit increases in neural activation for the familiar with learning and, with less 

difficulty, infants exhibit decreases in neural activation for the familiar. Finally, Kersey and 

Emberson (2016) examined the neural trajectories during audiovisual learning and found 

that infants exhibited an increase in neural activation followed by a decrease over the course 

of learning (i.e., repetition enhancement followed by repetition suppression). This particular 

non-linear trajectory closely parallels the Hunter and Ames model where familiar stimuli are 

preferred, reflected in increases in neural activity for these stimuli, and then dispreferred, 

reflected in decreases in neural activity for these stimuli.

While investigations of neural activity during learning (i.e., the neural learning trajectories) 

reveal more information about how learning shapes the infant brain, it is unknown why and 

how these trajectories of neural activation occur. The Hunter and Ames model is descriptive 

and provides a clear frame-work with which to integrate these findings, but it does not 

provide a mechanistic explanation about why these neural changes occur during learning. 

Here, we investigate whether the emergence of top-down predictions shapes these neural 

learning trajectories. To this end, we compared neural learning trajectories between preterm 

and full-term infants. Specifically, since Emberson, Boldin, et al. (2017) established that 

premature infants are unable to generate top-down predictions after learning, examining 
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learning trajectories in this population provides an opportunity to investigate how top-down 

predictions shape the neural changes observed during learning. Crucially, Emberson, Boldin, 

et al. (2017) established that the basic ability to form the audiovisual association is intact in 

our cohort of premature infants so any differences are attributable to the differences the top-

down predictions that are impaired in this population.

There is already some evidence that the emergency of top-down predictions are playing 

some role in neural learning trajectories. Kersey and Emberson (2016) found thatfull-term 

infants exhibitan inverted u-shaped learning trajectory (i.e., repetition enhancement followed 

by repetition suppression) during the audiovisual learning that supports the generation of 

top-down predictions. In exploratory analyses, Kersey and Emberson (2016) found that the 

shape of an individual infant’s learning trajectory can predict an infant’s individual top-

down prediction abilities (i.e., their occipital lobe response during an unexpected visual 

omission). In other words, how much an infant’s occipital lobe was modulated during 

learning, in this inverted u-shaped pattern, predicted how strongly an infant responded 

during unexpected omission trials which are designed to probe their top-down predictions. 

These findings suggest that neural learning trajectories are linked to top-down predictions.

Based on these findings, we hypothesized that premature infants, who exhibit deficits in top-

down predictions, would exhibit robust alterations in the neural learning trajectories. Since it 

has been established that prematurity disrupts the emergence of top-down predictions after 

learning, if the emergence of top-down predictions shapes neural changes during learning, 

then we will observe disrupted neural learning trajectories in premature infants as well. This 

would provide convergent and more direct evidence that the emergence of top-down 

predictions contributes to neural learning trajectories. It is possible that differences in neural 

learning trajectories would be specific to the occipital lobe, as the task is designed to induce 

visual predictions (i.e., the auditory cue preceded and predicted the visual event) or it is 

possible that differences in neural learning trajectories would be observed more broadly in 

those born prematurely. To this end, we analyze the learning trajectories of a cohort of 100 

infants (50 born prematurely) while they learn the audiovisual associations and characterize 

the neural changes they experience while they are learning. We are looking to uncover the 

same inverted u-shaped neural changes that were observed in Kersey and Emberson (2016) 

for this type of learning and contrast these trajectories across the two populations of infants. 

In addition to contrasting trajectories, we conduct an individual differences analysis (as in 

Kersey & Emberson, 2016) to investigate how variations in an infant’s ability to generate 

top-down prediction relates to their individual learning trajectories. We expect to find a 

positive correspondence between the emergence of top-down predictions and the strength of 

U-shape neural trajectories during learning. Overall, this investigation allows the first direct 

test whether the neural capacities to predict are related to online learning trajectories.

2 | METHODS

2.1 | Participants

As in Emberson, Boldin, et al. (2017), fifty full-term infants (birth at 36 weeks gestation or 

later, as defined in database) were recruited from the database of interested families for the 

Rochester Baby Lab. Full-term infants had no major health problems or surgeries and had 
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normal vision and hearing. They participated in the study between 5 and 7 months of age. 

The first twenty-six of these infants are the same infants reported in Emberson et al. (2015). 

All fifty preterm infants were recruited from the University of Rochester Medical Center 

Neonatal Intensive Care Unit (NICU). In order to isolate the effects of prematurity and avoid 

effects related to other medically-based risk factors on neural and cognitive development, a 

number of strict exclusionary criteria were applied to the preterm population. Infants were 

excluded from the study if they met any of the following criteria: intraventricular 

hemorrhage (IVH, grade 3 or 4), periventricular leukomalacia, severe bronchopulmonary 

dysplasia (i.e., infants who required supplementary oxygen after discharge), major surgeries, 

seizures, failing hearing screening, chromosomal abnormalities, major malformations, 

congenital viral infections, retinopathy of prematurity requiring intervention, or weight and 

head circumference less than the 10th or greater than the 90th percentiles at birth. Preterm 

infants had gestational ages ranging from 23 to 32 weeks (mean = 30.01 weeks, median = 

38.86 weeks), but only nine infants (21%) were born at less than 28 weeks gestation. 

Additionally, only one included infant had a gestational age <24 weeks (GA = 23 and 1 

day), and this infant met all health-related criteria described above. This means that the 

majority of included infants were very, but not extremely premature. Preterm infants 

participated in the study when they were 5–7 months corrected gestational age.

Of the 100 overall infants recruited for the study, 20 were excluded (6 preterm, 14 full-term) 

from analysis. As each infant exhibited different levels of interest in the experiment, the 

experiment was ended when the subject became fussy or noncompliant. This meant that 

some recruited infants (1 preterm infant and 3 full-term infants) did not sit through enough 

trials to be included in the final analysis, a minimum of 4 complete learning blocks 

(described in detail below) and 2 of each single trial (4 single trials total). An additional 5 

preterm infants and 10 full-term infants were excluded for poor signal quality. One full-term 

infant was excluded for too many missing channels (>50% of the channels in any of the 

three ROIs). One preterm infant was excluded after it was found that they failed to meet 

initial exclusionary criteria (head size <10th percentile). Overall, 79 infants were included in 

the final sample for the study (36 full-term and 43 preterm). Testing for racial (c2(8, N = 79) 

= 11.73, p = 0.164) and sex (c2(1, N = 79) = 0.11, p = 0.742) differences between the 

preterm and full-term infants yielded no significant population distinctions. Overall, there 

were 62 white, 5 black, 10 other, and two unreported infants with four reported as Hispanic 

and 75 as non-Hispanic. There were 39 female (20 preterm, 19 full-term) and 40 male (23 

preterm, 17 full-term) infants.

2.2 | Stimuli and experimental design

Auditory and visual stimuli were presented while the monitor displayed a monochromatic 

gray screen with a white box (black bordered) in the middle. Auditory stimuli were novel, 

non-speech sounds that included an unusual rattle sound and a honk like that of a clown 

horn. The visual stimulus was a red cartoon smiley face that entered the white box from 

either the top or bottom of the box. Each of the two sounds was consistently and uniquely 

paired with one direction of movement for the visual stimulus and this pairing was 

counterbalanced across infants. After entering the box, the stimulus moved into the box to 

touch the opposite side in 500 ms and then exited the box from the same side it had entered 
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in 500 ms. The total duration of the visual stimulus presentation was 1 s, which was the 

same as the length of the auditory stimuli. This audiovisual sequence was repeated six times 

to form a block of audiovisual stimuli. These blocks had three of each of the two types of 

audiovisual pairing presented in random order and separated by a jittered ISI (1–1.5 s). As 

these blocks form the basis of audiovisual learning, they will be referred to as learning 

blocks throughout the paper. In addition to learning blocks, infants also viewed individual 

trials. In each individual trial, one of the two auditory stimuli was presented. In half of these 

trials, the corresponding visual stimulus appeared 750 ms after the onset of the auditory 

stimulus (consistent with the audiovisual events contained in the learning blocks). The other 

half of trials were unexpected visual omissions designed to reveal top-down sensory 

predictions: the visual stimulus did not appear and infants instead saw only the presentation 

of the white square. After the initial presentation of three learning blocks, blocks and single 

trials were presented in “chunks” that included one learning block, two single audiovisual 

trials, and two single visual omission trials. The order of the presentation of the block and 

single trials within each chunk was randomized and each event was separated by baseline 

stimuli (dimmed fireworks video, Watanabe, Homae, Nakano, & Taga, 2008, and 

instrumental version of “Campdown Races,” Baby Music 2010) that lasted from 4 to 9 s. 

Figure 1 details the experimental procedure. The main analyses here focus on neural activity 

across the learning blocks. Each infant viewed a different number of learning blocks, 

depending on how long they maintained interest in the experiment. Included infants saw at 

least five learning blocks and at most eight. The single trials, not used in the primary 

analyses of this paper, are analyzed fully in Emberson, Boldin, et al. (2017).

The experiment was conducted in a darkened room with floor-to-ceiling curtains 

surrounding the infant and their caregiver such that only the monitor was visible to the 

infant. Infants sat on their caregiver’s laps, facing the screen. Caregivers were instructed not 

to interfere with the infant’s watching the video but to prevent them from grabbing the cap 

on their head or in any way moving the cap. Caregivers were also asked to keep the infantas 

still as possible, but to allow them to stand or move in order to keep them contentedly 

watching the video. Stimuli were presented on a Tobii 1750 eye tracker, screen measuring 

33.7 by 27 cm and computer speakers placed directly below the screen but behind the black 

curtain. Sounds were presented between 64 and 67 dB using MATLAB for Mac (R2007b) 

and Psychtoolbox (3.0.8 Beta, SVN revision 1245).

2.3 | FNIRS recordings

FNIRS recordings were conducted using a Hitachi ETG-4000 with a total of twenty-four 

channels: 12 over the back of the head to record bilaterally from the occipital lobe, and 12 

over the left side of the head to record from the left temporal lobe and prefrontal cortex. 

Channels were organized into two 3 × 3 arrays, and the cap was placed so that, for the lateral 

array, the central optode on the most ventral row was centered over the left ear and, for the 

rear array, the central optode on the most ventral row was centered between the ears and 

over the inion. The cap positioning was selected based on which NIRS channels were most 

likely to record from the occipital and temporal cortices in infants (Fillmore, Richards, 

Phillips-Meek, Cryer, & Stevens, 2015). Because of the curvature of the infant head, a 

number of channels (the most dorsal channels for each pad) did not provide consistently 
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good optical contact across all infants. Thus, we only considered a subset of the channels 

(seven on the lateral pad over the ear and five on the pad at the rear array) in subsequent 

analyses, excluding those with inconsistent optical contact. Locations of each channel were 

determined using a strict MRI coregistration procedure. Only the channels that provided 

consistently good optical contact across infants and had the highest proportion of 

localization to each of the three relevant neuroanatomical regions were included in analysis 

and each infant contributed all included channels in each ROI. In total, five channels were 

localized to the temporal lobe, three to the occipital lobe, and two to the frontal lobe (see 

Figure 2). FNIRS recordings were collected at 10 Hz (every 100 ms). Using a serial port, 

marks were presented from MATLAB on the stimulus presentation computer to the Hitachi 

ETG-4000 using standard methods. Marks were sent for the start and end of each 

presentation type for the given experiment.

2.4 | Data analysis

The raw data were exported from the Hitachi ETG-4000 to MATLAB (version R2015a for 

Mac) and were subsequently analyzed with HomER 2 (Hemodynamic Evoked Response 

NIRS data analysis GUI, version 1.5) using the default preprocessing pipeline of the NIRS 

data. First, raw intensity data were converted to optical density. Next, motion artifacts were 

identified and removed using a PCA filter and other techniques. Finally, the data was low-

pass filtered (3 Hz cutoff frequency) to remove noise and the modified Beer-Lambert Law 

was used to determine levels of hemoglobin concentration for each channel (all subsequent 

analyses used the oxyHb values outputted by HomER). The HomER 1 users guide contains 

a more detailed description and further information (Huppert, Diamond, Franceschini, & 

Boas, 2009). Timing information (mark identity and time received by the ETG-4000 relative 

to the fNIRS recordings) was also extracted from the ETG-4000 data using custom scripts 

run in MATLAB R2015a.

Subsequent analyses were conducted in MATLAB (R2015a) with custom analysis scripts. 

First, the continuous data was segmented and sorted into individual trial types based on the 

timing of marks. Because the experiment was stopped when the infant became inattentive, 

trials at the end of the experiment that were not presented past the mean duration of the 

baseline (duration of stimulus presentation + 6.5 s) were excluded. The number of complete 

trials was determined for each trial type and it was evaluated whether the infant met the 

inclusion criteria of watching a minimum of two single trials of both types (e.g., two 

audiovisual trials and two visual omission trials, see Participants for the number of infants 

excluded for insufficient number of trials watched). Additionally, infants who watched fewer 

than four block trials were excluded. This minimum is consistent with previous work done 

by Emberson, Cannon, Palmeri, Richards, and Aslin (2017) (Kersey & Emberson, 2016) as 

well as with other groups of researchers (e.g., Lloyd-Fox, Széplaki-Köllőd, Yin, & Csibra, 

2015). Full-term infants included in analysis looked on average for 6.34 block trials (SD = 

0.97, range = 5–8) while preterm infants looked on average for 6.63 blocks (SD = 0.93, 

range = 5–8). As response levels to single trial events are not analyzed in detail here, see 

Emberson, Boldin et al. (2017) for information on the average number of single trials (both 

audiovisual and visual omission) watched by included infants.
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Next, for each infant, the average concentration of oxygenated and deoxygenated 

hemoglobin per channel was determined for each condition. In this paper, we focus on 

average activation during the learning blocks. If the data collected was still noisy at this 

point (determined through a combination of visual inspection, experimental notes on optical 

contact and the presence of hair, and output from the otparex.m script, which provided a 

measure of the number of “bad” channels) infants were excluded. Critically, the decision to 

include or exclude infants was made before group averages were determined and was not 

revisited, thus minimizing experimenter bias. Next, the mean and variance of responses for 

oxygenated hemoglobin were determined within each ROI for each infant. An analysis time 

window of 26 s (5 s after stimulus onset to 31 s after stimulus onset) was used for all 

learning blocks. This window was defined to start with the initial stimulus presentation 

(adjusted to account for delay in hemodynamic response) and continue into the jittered ISI to 

capture the hemodynamic response to the learning block. Subsequent analyses on the mean 

hemodynamic responses were conducted in RStudio (version 0.99.484, R version 3.2.2) 

using the Ime4 (Bates, Maechler, Bolker, & Walker, 2015) and Imertest (Kuznetsova, 

Brockhoff, & Christensen, 2016) packages.

2.5 | Statistical analyses

We calculated the average magnitude of the hemodynamic response for each infant during 

each learning block and used mixed effects modeling to uncover the overall patterns in 

response over the course of these blocks (i.e., the time-course of learning). We conducted 

this analysis separately for three neuroanatomically defined regions of interest (ROIs): the 

temporal, frontal and occipital cortices. Here, we briefly outline the general analysis 

approach. We first modeled the response data from the full-term and preterm infants 

separately. For each group, we performed our analysis in three steps. First, we fit a linear 

model to the data to examine overall linear trends. Next, we fit a model that included both a 

linear and square term in order to examine any non-linear (quadratic) fits. Finally, we 

evaluated the difference between these models to determine whether a non-linear, inverted u-

shaped fit was superior to a linear fit (as previously reported in Kersey and Emberson 

[2016]). After examining each group separately, we used the same methods to model both 

the preterm and full-term infants. In the combined analysis, we included effects related to 

birth status (premature or full-term) to examine the role that prematurity plays in the 

formation of these learning trajectories. Finally, we employed a method of analysis initially 

reported in Kersey and Emberson (2016) to examine the relationship between individual 

infant’s learning trajectories and infants’ signature of top-down prediction (occipital 

responses to unexpected visual omission trials). Because each infant watched a different 

number of trials, we recognize the possibility that some of the results of the analyses 

described may be affected by these differences. To account for this, we performed all 

analyses using proportion of blocks completed (in addition to these analyses using absolute 

block number). These results are reported in the supplementary materials.

3 | RESULTS

First, we show that full-term infants exhibit significant non-linear (inverted u-shaped) 

changes in neural activity over learning (Figure 3a). To start, we fit linear models to the full-
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term neural response in each of the three ROIs. These models showed that the temporal and 

frontal ROIs exhibit significant linear increases in activation over the course of learning 

(temporal: t(26.78) = 2.89, p = 0.008; frontal: t(27.18) = 3.45, p = 0.002). The occipital ROI 

showed only a marginal linear increase in activation in this model (t(26.99) = 1.81, p = 

0.082). Next, we added a square term to each model to examine non-linear neural changes 

during learning. In all ROIs, we see a significant linear increase in activation over the course 

of learning (ts > 5.39, ps < 0.001) as well as a significant square term (ts < −5.29, ps < 

0.001). Full report of these statistics are shown in Table 1. The negative sign of the square 

terms confirmed that we find an inverted u-shaped pattern of activation across learning 

blocks. Model comparisons show that each of the three non-linear models explain 

significantly more of the variance in response levels than the linear only models (χ2s > 

25.77, ps < 0.001, also summarized in Table 3, rows 1,2, and 3). These results confirm and 

extend previous findings from Kersey and Emberson (2016) that audiovisual learning in 

infancy is associated with non-linear, inverted u-shaped learning trajectories.

Next, we applied the same analytical approach to the learning trajectories of preterm infants. 

We find that patterns of activation in the occipital ROI deviate from the patterns exhibited in 

the other ROIs and all ROIs in the full-terms (Figure 3b). In the linear only model, there is 

no significant pattern of activation in the occipital ROI among the preterm infants (t(43.64) = 

1.13, p = 0.264). This is in contrast to the other two ROIs, both of which show significant 

linear increases in activation over the course of learning (ts > 2.38, ps < 0.023). In the non-

linear models (i.e., a squared term is added to each model), preterm infants exhibited the 

same pattern of activation in the temporal and frontal ROIs (linear term: ts > 6.45, ps < 

0.001; square term: ts < −5.45, ps < 0.001). In contrast, the occipital ROI showed no 

significant patterns in response over the course of learning (linear term: t (266.55) = 0.64, p 
= 0.526; square term: t(249.48) = −0.15, p = 0.878). Full report of these statistics are shown 

in Table 2. Comparing the linear and non-linear models shows that the non-linear models are 

a significant improvement over the linear models in the temporal and frontal ROIs (Table 3, 

rows 5 and 6). In the occipital region, however, the addition of the non-linear term does not 

significantly improve the model (Table 3, row 5). This is expected as both the linear and 

non-linear occipital models show no significant patterns. These results provide strong 

evidence of differences in neural changes during learning between full-term and preterm 

infants and suggests that these differences are not found broadly but, for the three cortical 

regions investigated here, are specific to the occipital lobe.

To directly compare learning trajectories between preterm and full-term infants, we 

combined preterm and full-term infants into a single model. In these models, we included a 

linear and square term, as with the previous individual models, as well as a main effect of 

birth status (preterm or full-term) and interaction terms between birth status and the linear 

term and between birth status and the non-linear term. To provide further evidence of a 

distinction between preterm and full-term audiovisual response we used model comparisons 

to test if the models were significantly improved by the inclusion of the birth status related 

terms (main effect and interactions). Figure 3c overlays fits to response in each of the 

individual populations, enabling direct visual comparison between the two groups.

Boldin et al. Page 11

Dev Psychobiol. Author manuscript; available in PMC 2020 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the temporal ROI model, as in each individual group, there was a significant linear term 

(t(437) = 9.84, p < 0.001) and a significant square term (t(408.13) = −9.43, p < 0.001). 

However, there was no main effect of prematurity (t(164.24) = 1.19, p = 0.235) and no 

interaction between prematurity and the linear term (t(434.94) = −1.67, p = 0.095) or the 

square term (t(404.1) = 1.73, p = 0.085). Model comparisons showed no significant 

differences between this model and its counterpart that did not include any effects related to 

birth status (χ2 = 3.08, p = 0.380) indicating that preterm and full-term infants are 

responding similarly in this ROI. Similarly, in the frontal ROI model, there was also a 

significant linear term (t(452.11) = 7.68, p < 0.001) and a significant square term (t(435.12) 

= −6.91, p < 0.001) but no significant main effect of prematurity (t(189) = 1.24, p = 0.218). 

There were also no significant interactions between prematurity and either the linear 

(t(450.45) =−1.57, p = 0.117) or the square (t(431.69) = 1.85, p = 0.065) terms. Again, 

model comparisons revealed no significant difference between the two model types in the 

frontal lobe (χ2 = 4.95, p = 0.176), indicating again that the addition of birth status does not 

significantly improve the model.

The occipital ROI shows markedly different patterns across groups. There were significant 

interactions between prematurity and the linear term (t(441.27) = −3.91, p < 0.001) as well 

as between prematurity and the square term (t(413.95) = 4.09, p < 0.001). These significant 

interaction terms indicate that the preterm infants show a distinct trajectory of activation in 

the occipital lobe compared to full-term infants (see second panel, Figure 3c). However, 

there was no main effect of prematurity (t(146.34) = 1.93, p = 0.055). Like the other two 

ROIs, there was a significant linear term (t(444.71) = 5.72, p < 0.001) and a significant 

square term (t(420.06) = −5.45, p < 0.001).4 These group differences are further supported 

by the model comparison which indicates that the inclusion of factors related to prematurity 

improved the model (χ2 = 25.24, p < 0.001).

The effects of prematurity on learning trajectories in the occipital lobe are particularly 

interesting in the context of previous results showing that preterm infants show 

significantlyreduced occipital lobe response during trials that probe top-down visual 

prediction (unexpected visual omissions). Finally, we more directly probed the relationship 

between these neural trajectories during learning and top-down prediction. In exploratory 

analyses, previous work found that infants who have learned the audiovisual associations 

presented in the learning blocks exhibit stronger signatures of top-down prediction (i.e., 

occipital responses to unexpected visual omissions Kersey and Emberson [2016]). Following 

these exact methods, we examined whether the learning trajectories that were modeled 

above would predict response to the visual omissions in any ROI. Visual omission response 

was calculated by averaging overall response data within a 5–9 s time window after stimulus 

onset, followed by averaging over the total number of visual omission trials. This process 

was performed for each of the three ROIs. We used the coefficients for linear and square 

terms in each infant’s learning model (described above) to index the shape of individual 

Note that the degrees of freedom of the statistics vary greatly between the different models reported here. This variation is largely due 
to different numbers of subject being included in a given model (e.g., preterms, full-terms or both groups combined) as well as the 
types of models or estimator being predicted. Additionally, the same model and the same dataset can give rise to slightly different 
degrees of freedom because an estimating procedure is employed (using R packages Ime4 and ImerTest Bates et al., 2015; Kuznetsova 
et al., 2016) to determine the degrees of freedom of these mixed effects models.
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infants’ learning trajectories. We then used a multiple regression to determine if these terms 

could predict the visual omission response. We included all infants (preterm and full-term) 

in this analysis with no factors related to prematurity. This result confirms that, considering 

both preterm and full-term infants, the shape of an infant’s learning trajectory in the 

occipital ROI significantly predicts visual omission response in the occipital lobe (F (2, 75) 

= 10.71, p < 0.001, R2 = 0.20, Table 4, rows 1 and 2 shows more statistics for this model).

Additionally and inconsistent with Kersey and Emberson (2016), we also found that learning 

trajectories in both the temporal (F (2, 74) = 8.70, p < 0.001, R2 = 0.17 and Table 4, rows 3 

and 4) and frontal (F (2, 75) = 4.22, p = 0.018, R2 = 0.08 and Table 4, rows 5 and 6). ROIs 

significantly predicted occipital lobe omission response. Given that there is no difference in 

learning trajectories across birth status in the temporal or frontal lobes and the relationship 

between learning trajectories and visual omission response was exclusive to the occipital 

lobe in Kersey and Emberson (2016), we hypothesized that there might be more subtle 

relationships between learning in the temporal and frontal lobes and the visual omission 

response. If these effects are weaker than in the occipital lobe, this would explain both why 

these differences are not revealed at the group level (e.g., when mixed effects for subject are 

included in the model) and why they were not found with a much smaller sample size 

Kersey and Emberson (2016). To this end, we compared the goodness of fit of these models 

(R2 or the amount of variance explained). We see that the occipital model has the highest R2 

value (0.22). The frontal model has a comparatively low R2 value (0.10) and the temporal 

model has an R2 value that is slightly reduced from the occipital model (0.19). This pattern 

is matched by another measure of goodness of fit, the coefficients of the square terms (see 

Figure S2, which is included in the supplementary materials). These patterns indicate that 

while all models are significant overall, the model relating occipital learning trajectories to 

occipital omission response is a better predictor than the models predicting the occipital 

omission response from either temporal or frontal learning trajectories. This analysis is 

repeated using visual present trials in the supplementary materials (Ludlow & Klein, 2014).

It is important to note that the observed differences between the populations (full-term and 

preterm) in the occipital ROI, as compared to the other two ROIs, may be modulated by a 

general difference in activation between these three regions. Indeed, looking at the average-

time course through a single learning block does reveal qualitative differences in patterns of 

activation between the ROIs. However, it is also clear from these plots that there are stronger 

differences in pattern between the full-term and preterm infants in the occipital ROI (Figure 

S3) than in either of the other two regions (Figures S4 and S5). This suggests that, while 

there may be differences in learning in general between the occipital lobe and other regions 

of the brain, there is evidence of differences between the populations beyond this general, 

regional distinction.

4 | DISCUSSION

This study is the first to investigate the relationship between neural changes during learning 

and the top-down prediction signals enabled by learning. To this end, we compared learning 

trajectories in two groups of infants: typically developing full-term infants and infants at-risk 

for developmental impairment due to premature birth. Importantly, previous work has found 
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that premature birth gives rise to impairments in top-down prediction abilities (Emberson, 

Boldin, etal., 2017). Here, we asked whether these differences in the ability to generate top-

down predictions also have an impact on the online learning trajectories that the infant brain 

experiences. By comparing learning trajectories across these groups, we find that the nature 

and degree of modulation of the infant brain activity during learning is closely related to the 

emergence of top-down prediction.

Specifically, we examined neural changes while infants learned that an auditory event 

predicts a visual event. Extending Kersey and Emberson (2016), we find that learning in 

full-term infants is characterized by robust inverted u-shaped patterns of activation in three 

regions of the brain (temporal, occipital, and frontal). In all of these regions, we find a 

highly significant fit of a non-linear model to the the neural data indicating no substantial 

differences between the ROIs. However, direct comparisons between the ROIs were not 

conducted for three reasons: 1) we have no specific hypotheses for differences in learning 

across these regions; 2) regions of the brain differ in their skull thickness and space available 

for fNIRS recordings; 3) our focus is on a comparison within regions and across groups. 

Indeed, the group comparison revealed both striking similarities and differences between 

full-term and preterm infants. Overall, this inverted u-shaped pattern is closely matched in 

the temporal and frontal lobes of the preterm infants, but neural activation in the occipital 

lobe is strikingly different. Here, we see no significant changes in activation during learning 

over the course of the experiment. In other words, activity in the visual system is not 

modulated during learning in those born prematurely while they are given the opportunity to 

learn to predict a visual event. Moreover, in models including infants in both groups, we find 

that neural changes during learning significantly interact with prematurity. Again, these 

interactions are not found in the other ROIs. The specificity of this difference to the visual 

system in notable because the learning task is designed to induce visual prediction. Overall, 

the results present a tight link between neural changes observed during learning and top-

down signals.

Importantly, these differences in occipital learning trajectories are directly related to the 

signatures of top-down prediction that have been found to differ in those born prematurely.

Previous work has shown that full-term infants exhibit evidence of visual prediction as a 

result of this learning (i.e., occipital response during unexpected visual omission trials 

Emberson et al., 2015) while preterm infants show deficits in these visual prediction abilities 

after being given the same learning opportunities (Emberson, Boldin, et al., 2017). 

Following analysis techniques established in Kersey and Emberson (2016), we used linear 

modeling to determine whether the shape of the learning trajectory of an individual infant 

would predict their individual visual prediction abilities (indexed through their level of 

neural response to an unexpected visual omission event). The linking hypothesis here is that 

the shape of the learning trajectory arises from the emergence of top-down predictions and 

thus, this shape will be predictive of the level of response to a violation to these learned 

associations. Specifically, because we observe that differences in learning trajectories are 

specific to the occipital lobe, these predictive relationships may also be specific to the 

occipital lobe, as was found in Kersey and Emberson (2016). We do find that the shape of 

the learning trajectory in the occipital lobe significantly predicts occipital response to 
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unexpected visual omission trials. This result provides an additional, convergent link 

between the neural changes that co-occur with learning and the emergence of prediction 

from learning.

While the majority of our results demonstrate specificity in this link between learning and 

top-down prediction in the occipital lobe, we also find that individual learning trajectories in 

the temporal and frontal regions significantly predict occipital omission response. This is a 

surprising result considering that there are no differences in learning trajectories across 

groups. A comparison of two different measures of model fit revealed that while all of these 

relationships are significant, they are strongest for the occipital lobe. Thus, while our main 

analyses indicate that overall there are distinctions between groups only in the occipital 

region, there may be differences in learning trajectories that relate to the emergence of top-

down prediction between individual subjects, possibly regardless of birth status, that allow 

for these predictions even in the temporal and frontal ROIs.

One important area for future investigation is the nature of the deficits in learning and top-

down signals in the occipital lobe. For example, is the lack of modulation in the occipital 

lobe during learning because visual information is being predicted and prediction is 

impaired in prematurity, or are the deficits in top-down prediction specific to the occipital 

lobe and the intact learning dynamics in the temporal and frontal lobes evidence that 

learning is exerting a top-down influence on these regions? The current data is unable to 

disentangle these two possibilities, and it is an important topic for future investigation. 

Moreover, it is also beyond the scope of the current study to uncover which regions of the 

infant brain are initiating these feedback signals, den Ouden, Friston, Daw, McIntosh, and 

Stephan (2009) investigated modulation of the occipital lobe during visual prediction using 

fMRI in adults and found evidence that the basal ganglia (an important learning and memory 

system likely available early in life) was involved in modulating top-down connections to the 

visual system based on associative learning. While recording neural activity in the basal 

ganglia is not currently possible with fNIRS and fMRI with awake infants is extremely 

difficult (Aslin, Shukla, & Emberson, 2015), understanding the broader network of regions 

underlying these learning and prediction dynamics is an important topic for future 

investigation.

Overall, this work helps us more deeply understand the learning trajectories see in infant 

brain. Specifically, we provide evidence that these neural changes during learning could 

arise, at least in part, through the emergence of top-down predictions. More generally, we 

believe these findings indicate that learning, even starting very early in life, arises from an 

interplay of feedforward and feedback (e.g., prediction) processes (see Figure 4 for a visual 

depiction of our model of this relationship). Previous work has found that preterm infants 

exhibit deficits in top-down prediction that arise as a result of learning (i.e., no occipital lobe 

response to an unexpected omission of visual information). However, they do have an intact 

ability to detect unexpected visual omissions that likely arises from feedforward associative 

learning processes (Emberson, Boldin, etal., 2017). In other words, previous work 

established that this population is able to form the audiovisual association but is not able to 

capitalize on this knowledge to initiate top-down visual predictions. Here, we find that the 

visual system (occipital lobe) exhibits no changes in neural activity during learning: This 
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relationship provides evidence that the non-linear neural dynamics found during learning are 

arising from top-down predictions. Specifically, we propose that even in infancy, learning is 

supported by both feedforward processes (e.g., to form the initial association or statistical 

learning in learning and memory systems beyond perceptual systems, e.g., the basal ganglia, 

hippocampus, amygdala, frontal lobe) and feedback processes which modulate perceptual 

systems. This feedback can take the form of prediction for future sensory input which can 

either facilitate better perception or processing of correctly predicted information or can 

create signals (e.g., a prediction error) that can guide future learning if these predictions are 

incorrect. In this way, the infant brain is able to use the interplay between learning and 

memory and perception to tune their developing brains to the structure of their environment.

In addition to providing crucial insight into the relationship between learning trajectories 

and top-down prediction early in life, these results bear on the nature of deficits associated 

with prematurity. Specifically, these results provide convergent evidence that prematurity is 

associated with deficits in top-down processes that are available to young infants and come 

online with learning. We find that deficits in top-down prediction likely arise from a broader 

lack of modulation of the visual system (in a context that allows visual prediction) 

throughout the entire time-course of learning. We propose that this feedback, prediction 

process is a crucial part of a dynamic learning system that not only modifies developing 

perceptual systems but can also support future learning. In addition, impairment in feedback 

or top-down modulation might be intimately related to impairments in neural connectivity 

associated with prematurity (Back, 2014; Ball et al., 2012; Hüppi et al., 1996; Ment et al., 

2009; Smyser et al., 2010). Specifically, these top-down signals have been suggested in 

adults to be important for guiding and supporting the development of long-range 

connectivity (den Ouden, Daunizeau, Roiser, Friston, & Stephan, 2010; den Ouden et al., 

2009). Thus, deficits in the initiation of these top-down signals might initiate a disruptive 

cycle where reductions in connectivity result in poorer connections available to provide 

feedback and in turn reduce the developing brain’s ability to form these long-range 

connections based on co-activation, learning or effective information transfer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Breakdown of experimental design. Top panel shows step-by-step experimental procedure. 

In the second portion of the experiment (after the first three learning blocks), remaining 

stimuli are presented in groups of five trials, shuffled within each group. In each group, one 

learning block and four single trials (only one is depicted here) are presented, separated by 

baseline stimuli. Inset depicts an audio-visual trial. Six repeated audio-visual trials (of two 

types) make up a single learning block
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FIGURE 2. 
Left panel shows the three regions of interest on a template infant brain. Right panel shows 

representative example pictures used to determine the location of the NIRS optodes and 

anatomical markers for each individual infant
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FIGURE 3. 
Changes in neural activation with learning in full-term (a) and preterm (b) infants across 

multiple regions of the brain. The black lines represent the quadratic fit of the model and the 

colored lines are individual data points for each infant. Overlaid fits are included (c) to 

enable direct comparison. Note that the most striking visible difference between full-term 

and preterm fits occurs in the occipital lobe
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FIGURE 4. 
Schematic of bottom-up/feedforward and top-down/feedback processes during learning in 

infancy
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TABLE 1

Results of linear models of full-term neural response across blocks

ROI Term t Df p

Temporal Linear 9.80 181.2 <0.001

Square −9.54 169.6 <0.001

Occipital Linear 5.39 172.3 <0.001

Square −5.29 169.4 <0.001

Frontal Linear 8.82 251.3 <0.001

Square −7.02 234.1 <0.001

Each model includes both a linear and square term.
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TABLE 2

Results of linear models of preterm neural response across blocks

ROI Term t df p

Temporal Linear 8.93 251.3 <0.001

Square −8.64 234.1 <0.001

Occipital Linear 0.64 266.6 0.526

Square −0.15 249.5 0.878

Frontal Linear 6.45 258.4 <0.001

Square −5.23 244.3 <0.001

Each model includes both a linear and square term.
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TABLE 3

Results of analysis showing that quadratic models give a better fit to the learning timecourse than models with 

only a linear term

ROI Birth Status χ2 p-value

Temporal Full-term 72.51 <0.001

Occipital Full-term 25.77 <0.001

Frontal Full-term 42.89 <0.001

Temporal Preterm 64.32 <0.001

Occipital Preterm 0.02 0.878

Frontal Preterm 27.44 <0.001

Output of ANOVA model comparisons quantifying difference between linear only models and models including both a linear and a square term are 
shown. Degrees of freedom for all results are equal to 1 as there is a difference of only one term between the models.
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